
ar
X

iv
:1

71
1.

04
72

5v
1

 [
cs

.I
R

]
 1

3
N

ov
 2

01
7

Neural A�entive Session-based Recommendation

Jing Li
Shandong University

Jinan, China

jingli.sdu@gmail.com

Pengjie Ren
Shandong University

Jinan, China

jay.ren@outlook.com

Zhumin Chen
Shandong University

Jinan, China

chenzhumin@sdu.edu.cn

Zhaochun Ren
Data Science Lab, JD.com

Beijing, China

renzhaochun@jd.com

Tao Lian
Shandong University

Jinan, China

liantao1988@gmail.com

Jun Ma
Shandong University

Jinan, China

majun@sdu.edu.cn

ABSTRACT

Given e-commerce scenarios that user profiles are invisible, session-

based recommendation is proposed to generate recommendation

results from short sessions. Previous work only considers the

user’s sequential behavior in the current session, whereas the

user’s main purpose in the current session is not emphasized. In

this paper, we propose a novel neural networks framework, i.e.,

Neural Attentive Recommendation Machine (NARM), to tackle

this problem. Specifically, we explore a hybrid encoder with an

attention mechanism to model the user’s sequential behavior and

capture the user’s main purpose in the current session, which

are combined as a unified session representation later. We then

compute the recommendation scores for each candidate item with

a bi-linear matching scheme based on this unified session repre-

sentation. We train NARM by jointly learning the item and session

representations as well as their matchings. We carried out exten-

sive experiments on two benchmark datasets. Our experimental

results show that NARM outperforms state-of-the-art baselines on

both datasets. Furthermore, we also find that NARM achieves a

significant improvement on long sessions, which demonstrates its

advantages in modeling the user’s sequential behavior and main

purpose simultaneously.

KEYWORDS

Session-based recommendation, sequential behavior, recurrent neu-

ral networks, attention mechanism

1 INTRODUCTION

Auser session is kicked offwhen a user clicks a certain item; within

a user session, clicking on the interesting item, and spending more

time viewing it. After that, the user clicks another interesting one

to start the view again. Such iterative process will be completed un-

til the user’s requirements are satisfied. Current recommendation

research confronts challenges when recommendations are merely

from those user sessions, where existing recommendationmethods

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACMmust be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

CIKM’17 , November 6–10, 2017, Singapore.

© 2017 ACM. ISBN 978-1-4503-4918-5/17/11. . . $15.00
DOI: https://doi.org/10.1145/3132847.3132926

(a) The global recommender

(b) The local recommender

Figure 1: Two different recommenders. The global rec-

ommender models the user’s whole sequential behavior

to make recommendations while the local recommender

captures the user’smainpurpose tomake recommendations.

The numbers above the items denote the recommendation

scores produced by each recommender. In (b), the item in

the red dashed box is more relevant to the current user’s

intention. And the red line is thicker when the item is more

important.

[1, 16, 39, 42] cannot performwell. To tackle this problem, session-

based recommendation [33] is proposed to predict the next item

that the user is probably interested in based merely on implicit

feedbacks, i.e., user clicks, in the current session.

Hidasi et al. [12] apply recurrent neural networks (RNN) with

Gated Recurrent Units (GRU) for session-based recommendation.

The model considers the first item clicked by a user as the initial

input of RNN, and generates recommendations based on it. Then

the user might click one of the recommendations, which is fed

into RNN next, and the successive recommendations are produced

based on the whole previous clicks. Tan et al. [40] further improve

this RNN-based model by utilizing two crucial techniques, i.e.,

data augmentation and a method to account for shifts in the

input data distribution. Though all above RNN-based methods

show promising improvements over traditional recommendation

approaches, they only take into account the user’s sequential

behavior in the current session, whereas the user’s main purpose

in the current session is not emphasized. Relying only on the user’s

sequential behavior is dangerous when a user accidentally clicks

on wrong items or s/he is attracted by some unrelated items due

http://arxiv.org/abs/1711.04725v1

to curiosity. Therefore, we argue that both the user’s sequential

behavior and main purpose in the current session should be

considered in session-based recommendation.

Suppose that a user wants to buy a shirt on the Internet. As

shown in Figure 1, during browsing, s/he tends to click on some

shirts with similar styles to make a comparison, meanwhile s/he

might click a pair of suit pants by accident or due to curiosity.

After that, s/he keeps looking for suitable shirts. In this case, if

we only consider about his/her sequential behavior, another shirt

or suit pants even a pair of shoes might be recommended because

many users click them after clicking some shirts and suit pants,

as shown in Figure 1(a). Assume that the recommender is an

experienced human purchasing guide, the guide could conjecture

that this user is very likely to buy a short sleeve shirt at this time

because most of his/her clicked items are related to it. Therefore,

more attention would be paid to the short sleeve shirts that the

user has clicked and another similar shirt would be recommended,

as shown in Figure 1(b). Ideally, in addition to considering about

the user’s entire sequential behavior, a better recommender should

also take into account the user’s main purpose which is reflected

by some relatively important items in the current session. Note

that the sequential behavior and the main purpose in one session

are complementary to each other because we can not always

conjecture a user’s main purpose from a session, e.g., when the

session is too short or the user just clicks something aimlessly.

To tackle the above problem, we propose a novel neural net-

works framework, namely Neural Attentive Recommendation Ma-

chine (NARM). Specifically, we explore a hybrid encoder with an

attention mechanism to model the user’s sequential behavior and

capture the user’s main purpose in the current session, which are

combined as a unified session representation later. With this item-

level attention mechanism, NARM learns to attend differentially to

more and less important items. We then compute the recommen-

dation scores for each candidate item with a bi-linear matching

scheme based on the unified session representation. NARM is

trained by jointly learning the item and session representations

as well as their matchings.

The main contributions of this work are summarized as follows:

• We propose a novel NARM model to take into account

both the user’s sequential behavior and main purpose in

the current session, and compute recommendation scores

by using a bi-linear matching scheme.

• We apply an attention mechanism to extract the user’s

main purpose in the current session.

• We carried out extensive experiments on two benchmark

datasets. The results show that NARM outperforms state-

of-the-art baselines in terms of recall and MRR on both

datasets. Moreover, we find that NARM achieves better

performance on long sessions, which demonstrates its

advantages inmodeling the user’s sequential behavior and

main purpose simultaneously.

2 RELATED WORK

Session-based recommendation is a typical application of rec-

ommender systems based on implicit feedbacks, where no ex-

plicit preferences (e.g., ratings) but only positive observations (e.g.,

clicks) are available [10, 23, 27]. These positive observations are

usually in a form of sequential data as obtained by passively

tracking users’ behavior over a sequence of time. In this section, we

briefly review the related work on session-based recommendation

from the following two aspects, i.e., traditional methods and deep

learning based methods.

2.1 Traditional Methods

Typically, there are two traditional modeling paradigms, i.e., gen-

eral recommender and sequential recommender.

General recommender is mainly based on item-to-item rec-

ommendation approaches. In this setting, an item-to-item similar-

ity matrix is pre-computed from the available session data. Items

that are often clicked together (i.e., co-occurrence) in sessions

are considered to be similar. Linden et al. [20] propose an item-

to-item collaborative filtering method to personalize the online

store for each customer. Sarwar et al. [32] analyze different item-

based recommendation generation algorithms and compare their

results with basic k-nearest neighbor approaches. Though these

methods have proven to be effective and are widely employed, they

only take into account the last click of the session, ignoring the

information of the whole click sequence.

Sequential recommender is based on Markov chains which

utilizes sequential data by predicting users’ next action given

the last action [36, 46]. Zimdars et al. [46] propose a sequential

recommender based on Markov chains and investigate how to

extract sequential patterns to learn the next state using proba-

bilistic decision-tree models. Shani et al. [36] present a Markov

Decesion Processes (MDP) aiming to provide recommendations

in a session-based manner and the simplest MDP boil down to

first-order Markov chains where the next recommendation can

be simply computed through the transition probabilities between

items. Mobasher et al. [25] study different sequential patterns for

recommendation and find that contiguous sequential patterns are

more suitable for sequential prediction task than general sequen-

tial patterns. Yap et al. [44] introduce a new Competence Score

measure in personalized sequential pattern mining for next-item

recommendations. Chen et al. [3]model playlists asMarkov chains,

and propose logistic Markov Embeddings to learn the representa-

tions of songs for playlists prediction. A major issue with applying

Markov chains in the session-based recommendation task is that

the state space quickly becomes unmanageable when trying to

include all possible sequences of potential user selections over all

items.

2.2 Deep Learning based Methods

Deep learning has recently been applied very successfully in areas

such as image recognition [8, 17], speech recognition [2, 7, 13] and

neural language processing [5, 18, 30, 37, 38]. Deep models can be

trained to learn discriminative representations from unstructured

data [9, 11, 19]. Here, we focus on the related work that uses deep

learning models to solve recommendation tasks.

Neural network recommender is mostly focusing on the clas-

sical collaborative filtering user-item setting. Salakhutdinov et al.

[31] first propose to use Restricted BoltzmannMachines (RBM) for

Collaborative Filtering (CF). In their work, RBM is used to model

user-item interactions and to perform recommendations. Recently,

denoising auto-encoders have been used to perform CF in a sim-

ilar manner [34, 43]. Wang et al. [41] introduce a hierarchical

representation model for the next basket recommendation which

is based on encoder-decoder mechanism. Deep neural networks

have also been used in cross-domain recommendations whereby

items are mapped to a joint latent space [6]. Recurrent Neural

Networks (RNN) have been devised to model variable-length se-

quence data. Recently, Hidasi et al. [12] apply RNN to session-

based recommendation and achieve significant improvements over

traditional methods. The proposed model utilizes session-parallel

mini-batch training and employs ranking-based loss functions for

learning the model. Tan et al. [40] further study the application

of RNN in session-based recommendation. They propose two

techniques to improve the performance of their model, namely

data augmentation and a method to account for shifts in the input

data distribution. Zhang et al. [45] also use RNN for the click

sequence prediction, they consider historical user behaviors as

well as hand-crafted features for each user and item.

Though a growing number of publications on session-based

recommendation focus on RNN-based methods, unlike existing

studies, we propose a novel neural attentive recommendation

model that combines both the user’s sequential behavior and

main purpose in the current session, which to the best of our

knowledge, is not considered by existing researches. And we apply

the attentionmechanism to session-based recommendation for the

first time.

3 METHOD

In this section, we first introduce the session-based recommenda-

tion task. Then we describe the proposed NARM in detail.

3.1 Session-based Recommendation

Session-based recommendation is the task of predicting what a

user would like to click next when his/her current sequential

transaction data is given. Here we give a formulation of the session-

based recommendation problem.

Let [x1,x2, ..., xn−1, xn] be a click session, where xi ∈ I (1 ≤

i ≤ n) is the index of one clicked item out of a total number ofm

items. We build a modelM so that for any given prefix of the click

sequence in the session, x = [x1,x2, ..., xt−1,xt], 1 ≤ t ≤ n, we get

the output y = M(x), where y = [y1,y2, ...,ym−1,ym]. We view

y as a ranking list over all the next items that can occur in that

session, where yj (1 ≤ j ≤ m) corresponds to the recommendation

score of item j. Since a recommender typically needs to make more

than one recommendations for the user, thus the top-k (1 ≤ k ≤m)

items in y are recommended.

3.2 Overview

In this paper, we propose an improved neural encoder-decoder

architecture [26, 35] to address the session-based recommenda-

tion problem, named Neural Attentive Recommendation Machine

(NARM). The basic idea of NARM is to build a hidden represen-

tation of the current session, and then generate predictions based

on it. As shown in Figure 2, the encoder converts the input click

sequence x = [x1,x2, ..., xt−1,xt] into a set of high-dimensional

Figure 2: The general framework and dataflow of the

encoder-decoder-basedNARM.

hidden representations h = [h1,h2, ...,ht−1,ht], which along

with the attention signal at time t (denoted as αt), are fed to the

session feature generator to build the representation of the current

session to decode at time t (denoted as ct). Finally ct is transformed

by a matrix U (as part of the decoder) into an activate function to

produce a ranking list over all items, y = [y1,y2, ...,ym−1,ym], that

can occur in the current session.

The role of αt is to determine which part of the hidden repre-

sentations should be emphasized or ignored at time t . It should

be noted that αt could be fixed over time or changes dynamically

during the prediction process. In the dynamic setting, αt can be a

function of the representations of hidden states or the input item

embeddings. We adopt the dynamic setting in our model, more

details will be described in §3.4.

The basic idea of our work is to learn a recommendation model

that takes into consideration both the user’s sequential behavior

and main purpose in the current session. In the following part

of this section, we first describe the global encoder in NARM

which is used to model the user’s sequential behavior (§3.3). Then

we introduce the local encoder which is used to capture the

user’s main purpose in the current session (§3.4). Finally we

show our NARM which combines both of them and computes

the recommendation scores for each candidate item by using a bi-

linear matching scheme (§3.5).

3.3 Global Encoder in NARM

In the global encoder, the inputs are entire previous clickswhile the

output is the feature of the user’s sequential behavior in the current

session. Both the inputs and output are uniformly represented by

high-dimensional vectors.

Figure 3(a) shows the graphical model of the global encoder

in NARM. We use a RNN with Gated Recurrent Units (GRU)

rather than a standard RNN because Hidasi et al. [12] demonstrate

that GRU can outperform the Long Short-Term Memory (LSTM)

[14] units for the session-based recommendation task. GRU is a

more elaborate RNN unit that aims at dealing with the vanishing

gradient problem. The activation of GRU is a linear interpolation

(a) The graphical model of the global encoder in NARM, where the last

hidden state is interpreted as the user’s sequential behavior feature c
g
t =

ht .

(b) The graphical model of the local encoder in NARM, where the weighted

sum of hidden states is interpreted as the user’s main purpose feature c l
t =∑t

j=1 αt jhj .

Figure 3: The global encoder and the local encoder in NARM.

between the previous activation ht−1 and the candidate activation

ĥt ,

ht = (1 − zt)ht−1 + zt ĥt , (1)

where the update gate zt is given by

zt = σ (Wzxt + Uzht−1) . (2)

The candidate activation function ĥt is computed as

ĥt = tanh[Wxt + U (rt ⊙ ht−1)] , (3)

where the reset gate rt is given by

rt = σ (W rxt + U rht−1) . (4)

With a trivial session feature generator, we essentially use the

final hidden state ht as the representation of the user’s sequential

behavior

c
g
t = ht . (5)

However, this global encoder has its drawbacks such as a

vectorial summarization of the whole sequence behavior is often

hard to capture a preciser intention of the current user.

3.4 Local Encoder in NARM

The architecture of the local encoder is similar to the global

encoder as shown in Figure 3(b). In this encoding scheme we also

use RNN with GRU as the basic component. To capture the user’s

main purpose in the current session, we involve an item-level

attention mechanism which allows the decoder to dynamically

select and linearly combine different parts of the input sequence,

c
l
t =

t∑

j=1

αt jhj , (6)

where the weighted factors α determine which part of the input

sequence should be emphasized or ignored when making predic-

tions, which in turn is a function of hidden states,

αt j = q(ht ,hj) . (7)

Basically, the weighted factor αt j models the alignment between

the inputs around position j and the output at position t , so it can

be viewed as a specific matching model. In the local encoder, the

function q specifically computes the similarity between the final

hidden state ht and the representation of the previous clicked item

hj ,

q(ht ,hj) = v
Tσ (A1ht + A2hj) , (8)

where σ is an activate function such as sigmoid function, matrix

A1 is used to transform ht into a latent space, and A2 plays the

same role for hj .

This local encoder enjoys the advantages of adaptively focusing

onmore important items to capture the user’s main purpose in the

current session.

3.5 NARM Model

For the task of session-based recommendation, the global encoder

has the summarization of the whole sequential behavior, while

the local encoder can adaptively select the important items in the

current session to capture the user’s main purpose. We conjecture

that the representation of the sequential behavior may provide

useful information for capturing the user’s main purpose in the

current session. Therefore, we use the representations of the

sequential behavior and the previous hidden states to compute the

attention weight for each clicked item. Then a natural extension

combines the sequential behavior feature and the user purpose

feature by concatenating them to form an extended representation

for each time stamp.

As shown in Figure 4, we can see the summarization h
g
t is in-

corporated into ct to provide a sequential behavior representation

for NARM. It should be noticed that the session feature generator

in NARM will evoke different encoding mechanisms in the global

encoder and the local encoder, although they will be combined

later to form a unified representation. More specifically, the last

hidden state of the global encoder h
g
t plays a role different from

that of the local encoder hlt . The former has the responsibility

to encode the entire sequential behavior. The latter is used to

compute the attention weights with the previous hidden states. By

this hybrid encoding scheme, both the user’s sequential behavior

and main purpose in the current session can be modeled into a

unified representation ct , which is the concatenation of vectors c
g
t

Figure 4: The graphical model of NARM, where the session feature ct is represented by the concatenation of vectors c
g
t and c lt

(as computed in equation (5) and (6)). Note thath
g
t and h

l
t play different roles, while they have the same values. The last hidden

state of the global encoder h
g
t plays a role to encode the entire input clicks while the last hidden state of the local encoder hlt

is used to compute attention weights with the previous hidden states.

and c lt ,

ct = [c
g
t ;c

l
t] = [h

g
t ;

t∑

j=1

αt jh
l
t] . (9)

Figure 4 also gives a graphical illustration of the adopted de-

coding mechanism in NARM. Generally, a standard RNN utilizes

fully-connected layer to decode. But using fully-connected layer

means that the number of parameters to be learned in this layer is

|H | ∗ |N | where |H | is the dimension of the session representation

and |N | is the number of candidate items for prediction. Thus we

have to reserve a large space to store these parameters. Though

there are some approaches to reduce the parameters such as using

a hierarchical softmax layer [24], and negative sampling at random

[22], they are not the best choices for our model.

We propose an alternative bi-linear decoding scheme which not

only reduces the number of the parameters, but also improves the

performance of NARM. Specifically, a bi-linear similarity function

between the representations of the current session and each candi-

date items is used to compute a similarity score Si ,

Si = embTi B ct , (10)

where B is a |D | ∗ |H | matrix, |D | is the dimension of each item

embedding. Then the similarity score of each item is entered to

a softmax layer to obtain the probability that the item will occur

next. By using this bi-linear decoder, we reduce the number of

parameters from |N | ∗ |H | to |D | ∗ |H |, where |D | is usually smaller

than |N |. Moreover, the experiment results demonstrate that using

this bi-linear decoder can improve the performance of NARM (as

demonstrated in §4.4).

To learn the parameters of the model, we do not utilize the

proposed training procedure in [12], where the model is trained in

a session-parallel, sequence-to-sequence manner. Instead, in order

to fit the attention mechanism in the local encoder, NARM process

each sequence [x1, x2, ..., xt−1, xt] separately. Our model can be

trained by using a standard mini-batch gradient descent on the

cross-entropy loss:

L(p,q) = −

m∑

i=1

pi loд(qi) (11)

where q is the prediction probability distribution and p is the truly

distribution. At last, a Back-Propagation Through Time (BPTT)

method for a fixed number of time steps is adopted to train NARM.

4 EXPERIMENTAL SETUP

In this section, we first describe the datasets, the state-of-the-art

methods and the evaluation metrics employed in our experiments.

Then we compare NARMs with different decoding schemes. Fi-

nally, we compare NARM with state-of-the-art methods.

4.1 Dataset

We evaluate different recommenders on two standard transaction

datasets, i.e., YOOCHOOSE dataset and DIGINETICA dataset.

• YOOCHOOSE1 is a public dataset released by RecSys

Challenge 2015. This dataset contains click-streams on an

e-commerce site. After filtering out sessions of length 1

and items that appear less than 5 times, there remains

7981580 sessions and 37483 items.

• DIGINETICA2 comes from CIKM Cup 2016. We only used

the released transaction data and also filtered out sessions

of length 1 and items that appear less than 5 times. Finally

the dataset contains 204771 sessions and 43097 items.

We first conducted some preprocesses over two datasets. For

YOOCHOOSE, we used the sessions of subsequent day for testing

and filtered out clicks from the test set where the clicked items did

not appear in the training set. For DIGINETICA, the only difference

is that we use the sessions of subsequent week for testing. Because

we did not train NARM in a session-parallel manner [12], a

1http://2015.recsyschallenge.com/challenge.html
2http://cikm2016.cs.iupui.edu/cikm-cup

Table 1: Statistics of the datasets used in our experiments. (The avg.length means the average length of the complete dataset.)

Datasets all the clicks train sessions test sessions all the items avg.length

YOOCHOOSE 1/64 557248 369859 55898 16766 6.16

YOOCHOOSE 1/4 8326407 5917746 55898 29618 5.71

DIGINETICA 982961 719470 60858 43097 5.12

sequence splitting preprocess is necessary. For the input session

[x1, x2, ..., xn−1, xn], we generated the sequences and correspond-

ing labels ([x1],V (x2), ([x1, x2],V (x3), ..., ([x1,x2, ...,xn−1],V (xn))

for training on both YOOCHOOSE and DIGINETICA. The corre-

sponding labelV (xi) is the last click in the current session.

For the following reasons: (1) YOOCHOOSE is quite large, (2)

Tan et al. [40] verified that the recommendation models do need

to account for changing user behavior over time, (3) their exper-

imental results showed that training on the entire dataset yields

slightly poorer results than training onmore recent fractions of the

datasets. Thus we sorted the training sequences of YOOCHOOSE

by time and reported our results on the model trained on more

recent fractions 1/64 and 1/4 of training sequences as well. Note

that some items that in the test set would not appear in the

training set since we trained the model only on more recent

fractions. The statistics of the three datasets (i.e., YOOCHOOSE

1/64, YOOCHOOSE 1/4 and DIGINETICA) are shown in Table 1.

4.2 Baseline Methods

We compare the proposed NARM with five traditional methods

(i.e., POP, S-POP, Item-KNN, BPR-MF and FPMC) and two RNN-

based models (i.e., GRU-Rec and Improved GRU-Rec).

• POP: Popular predictor always recommends the most

popular items in the training set. Despite its simplicity, it

is often a strong baseline in certain domains.

• S-POP: This baseline recommends themost popular items

for the current session. The recommendation list changes

during the session gains more items. Ties are broken up

using global popularity values.

• Item-KNN: In this baseline, similarity is defined as the

co-occurrence number of two items in sessions divided by

the square root of the product of the number of sessions in

which either item occurs. Regularization is also included

to avoid coincidental high similarities between rarely vis-

ited items [4, 20].

• BPR-MF: BPR-MF [28] optimizes a pairwise ranking ob-

jective function via stochastic gradient descent. Matrix

factorization can not be directly applied to session-based

recommendation because new sessions do not have pre-

computed latent representations. However, we can make

it work by representing a new session with the average

latent factors of items occurred in the session so far. In

other words, the recommendation score can be computed

as the average of the similarities between latent factors of

a candidate item and the items in the session so far.

• FPMC: FPMC [29] is a state-of-the-art hybrid model on

the next-basket recommendation. In order tomake it work

on session-based recommendation, we do not consider the

user latent representations when computing recommenda-

tion scores.

• GRU-Rec: We denote the model proposed in [12] as GRU-

Rec, which utilizes session-parallel mini-batch training

process and also employs ranking-based loss functions for

learning the model.

• Improved GRU-Rec: We denote the model proposed in

[40] as Improved GRU-Rec. Improved GRU-Rec adopts

two techniques which include data augmentation and a

method to account for shifts in the input data distribution

to improve the performance of GRU-Rec.

4.3 Evaluation Metrics and Experimental Setup

4.3.1 Evaluation Metrics.

As recommender systems can only recommend a few items at

each time, the actual item a user might pick should be amongst the

first few items of the list. Therefore, we use the following metrics

to evaluate the quality of the recommendation lists.

• Recall@20: The primary evaluation metric is Recall@20

that is the proportion of cases when the desired item is

amongst the top-20 items in all test cases. Recall@N does

not consider the actual rank of the item as long as it is

amongst the top-N and also usually correlates well with

other metrics such as click-through rate (CTR) [21].

• MRR@20: Another used metric is MRR@20 (Mean Recip-

rocal Rank), which is the average of reciprocal ranks of

the desire items. The reciprocal rank is set to zero if the

rank is larger than 20. MRR takes the rank of the item into

account, which is important in settings where the order of

recommendations matters.

4.3.2 Experimental Setup.

The proposed NARM model uses 50-dimensional embeddings

for the items. Optimization is done using Adam [15] with the initial

learning rate sets to 0.001, and the mini-batch size is fixed at 512.

There are two dropout layers used in NARM: the first dropout layer

is between the item embedding layer and the GRU layer with 25%

dropout, the second one is between the GRU layer and the bi-linear

similarity layer with 50% dropout. We also truncate BPTT at 19

time steps as the setting in the state-of-the-art method [40] and

the number of epochs is set to 30 while using 10% of the training

data as the validation set. We use one GRU layer in our model and

theGRU is set at 100 hidden units. Themodel is defined and trained

in Theano on a GeForce GTX TitanX GPU. The source code of our

model is available online3.

3https://github.com/lijingsdu/sessionRec_NARM

Table 2: The comparison of different decoders in NARM.

Decoders

YOOCHOOSE 1/64 YOOCHOOSE 1/4 DIGINETICA

Recall@20(%) MRR@20(%) Recall@20(%) MRR@20(%) Recall@20(%) MRR@20(%)

Fully-connected decoder 67.67 29.17 69.49 29.54 57.84 24.77

Bi-linear similarity decoder 68.32 28.76 69.73 29.23 62.58 27.35

Table 3: Performance comparison of NARM with baseline methods over three datasets.

Methods

YOOCHOOSE 1/64 YOOCHOOSE 1/4 DIGINETICA

Recall@20(%) MRR@20(%) Recall@20(%) MRR@20(%) Recall@20(%) MRR@20(%)

POP 6.71 1.65 1.33 0.30 0.91 0.23

S-POP 30.44 18.35 27.08 17.75 21.07 14.69

Item-KNN 51.60 21.81 52.31 21.70 28.35 9.45

BPR-MF 31.31 12.08 3.40 1.57 15.19 8.63

FPMC* 45.62 15.01 - - 31.55 8.92

GRU-Rec 60.64 22.89 59.53 22.60 43.82 15.46

Improved GRU-Rec 67.84 29.00 69.11 29.22 57.95 24.93

NARM 68.32 28.76 69.73 29.23 62.58 27.35

* On YOOCHOOSE 1/4, we do not have enough memory to initialize FPMC. Our available memory is 120G.

4.4 Comparison among Different Decoders

We first empirically compare NARMs with different decoders,

i.e., fully-connected decoder and bi-linear similarity decoder. The

results over three datasets are shown in Table 2. Here we only

illustrate the results on 100-dimensional hidden states because we

obtain the same conclusions on other dimension settings.

We make following observations from Table 2: (1) With regard

to Recall@20, the performance improves when using the bi-linear

similarity decoder, and the improvements are around 0.65%, 0.24%

and 4.74% respectively over three datasets. (2) And with regard to

MRR@20, the performance on the model using the bi-linear de-

coder becomes a little worse on YOOCHOOSE 1/64 and 1/4. But on

DIGINETICA, the model with the bi-linear decoder still obviously

outperforms the model with the fully-connected decoder.

For the session-based recommendation task, as the recommender

system recommends top-20 items at once in our settings, the actual

item a user might pick should be among the list of 20 items. Thus

we consider that the recall metric is more important than the MRR

metric in this task, and NARM adopts the bi-linear decoder in the

following experiments.

4.5 Comparison against Baselines

Next we compare our NARMmodel with state-of-the-art methods.

The results of all methods over three datasets are shown in Table 3.

And a more specific comparison between NARM and the best base-

line (i.e., Improved GRU-Rec) over three datasets are illustrated in

Figure 5.

We have the following observations from the results: (1) For

YOOCHOOSE 1/4 dataset, BPR-MF does not work when we use

the average of item factors occurred in the session to replace the

user factor. Besides, since we regard each session as one user in

FPMC, we do not have enough memory to initialize it. These

problems indicate traditional user-based methods are no longer

suitable for session-based recommendation. (2)Overall, three RNN-

based methods consistently outperform the traditional baselines,

which demonstrates that RNN-based models are good at dealing

with sequence information in sessions. (3) By taking both the

user’s sequential behavior and main purpose into consideration,

the proposed NARM can outperform all the baselines in terms

of recall@20 over three datasets and can outperform most of the

baselines in terms of MRR@20. Take DIGINETICA dataset as an

example, when compared with the best baseline (i.e., Improved

GRU-Rec), the relative performance improvements by NARM are

around 7.98% and 9.70% respectively in terms of recall@20 and

MRR@20. (4) As we can see, the recall values on two YOOCHOOSE

datasets are not as significantly as the results on DIGINETICA and

the obtained MRR values are very close to each other. We consider

that one of the important reasons is when we split YOOCHOOSE

dataset to 1/64 and 1/4, we do not filter out clicks from the test

set where the clicked items are not in the training set in order to

be consistent with the setting on Improved GRU-Rec [40]. While

on DIGINETICA, we filter out these clicks from the test set, and

hence NARM outperforms the baselines significantly in terms of

both Recall@20 and MRR@20.

5 ANALYSIS

In this section, We further explore the influences of using different

session features in NARM and analyze the effectiveness of the

adopted attention mechanism.

(a) YOOCHOOSE1/64 (b) YOOCHOOSE1/4 (c) DIGINETICA

Figure 5: Performance comparison between NARM and the best baseline (i.e., Improved GRU-Rec) over three datasets.

Table 4: Performance comparison among three versions of

NARM over three datasets.

(a) Performance comparison on YOOCHOOSE 1/64

Models

d=50 d=100

Recall@20 MRR@20 Recall@20 MRR@20

NARMдlobal 67.26 26.95 68.15 28.37

NARMlocal 67.07 26.79 68.10 28.38

NARMhybr id 68.28 28.10 68.32 28.76

(b) Performance comparison on YOOCHOOSE 1/4

Models

d=50 d=100

Recall@20 MRR@20 Recall@20 MRR@20

NARMдlobal 67.67 27.10 68.91 28.48

NARMlocal 67.50 27.21 68.01 27.36

NARMhybr id 69.17 28.67 69.73 29.23

(c) Performance comparison on DIGINETICA

Models

d=50 d=100

Recall@20 MRR@20 Recall@20 MRR@20

NARMдlobal 59.63 23.52 61.88 26.51

NARMlocal 58.74 22.91 61.71 26.04

NARMhybr id 61.73 26.25 62.58 27.35

5.1 Influence of Using Different Features

In this part, we refer to the NARM that uses the sequential be-

havior feature only, the NARM that uses the user purpose feature

only, and the NARM that uses both two features as NARMдlobal ,

NARMlocal and NARMhybr id respectively. As shown in Table

4, (1) NARMдlobal and NARMlocal , which only use a single

feature, do not perform well on three datasets. Besides, their

performance are very close to each other in terms of two metrics.

This indicates that merely considering the sequential behavior

or the user purpose in the current session may not be able to

learn a good recommendation model. (2) When we take into

account both the user’s sequential behavior and main purpose,

NARMhybr id performs better than NARMдlobal and NARMlocal

in terms of Recall@20 and MRR@20 on different hidden state

dimensions over three datasets. Take DIGINETICA dataset as

an example, when compared with NARMдlobal and NARMlocal

with the dimensionality of the hidden state set to 50, the rel-

ative performance improvements by NARMhybr id are around

3.52% and 5.09% in terms of Recall@20 respectively. These results

demonstrate the advantages of considering both the sequential

behavior and themain purpose of the current user in session-based

recommendation.

5.2 Influence of Different Session Lengths

Our NARM model is based on the assumption that when a user is

browsing online, his/her click behavior frequently revolves his/her

main purpose in the current session. However, we can hardly

capture the user’s main purpose when s/he just clicks a few items.

Therefore, our NARM model should be good at modeling long

sessions. To verify this, wemake comparisons among sessions with

different lengths on DIGINETICA. As shown in Table 5, (1) NARM

performs better when the session lengths are between 4 and 17

in general. This indicates that NARM do capture the user’s main

purpose more accuracy on long sessions. In other words, it could

Figure 6: Visualization of items weights. The depth of the color corresponds to the importance of items given by equation (7).

The numbers above the sessions is the session IDs. (Best viewed in color.)

Table 5: Performance comparison among different session

lengths on DIGINETICA dataset. (The baseline method is

Improved GRU-Rec [40].)

DIGINETICA DATASET

Length Baseline correct NARM correct Performance

1 8747 9358 +6.98%

2 6601 7084 +7.31%

3 4923 5299 +7.63%

4 3625 3958 +9.18%

5 2789 3019 +8.24%

6 2029 2202 +8.52%

7 1520 1656 +8.94%

8 1198 1295 +8.09%

9 915 996 +8.85%

10 690 753 +9.13%

11 509 587 +15.32%

12 411 459 +11.67%

13 304 323 +6.25%

14 243 260 +6.99%

15 199 219 +10.05%

16 149 165 +10.73%

17 98 112 +14.28%

18 88 93 +5.68%

19 70 75 +7.14%

make a better prediction if NARM captures more user purpose

features on the basis of the existing sequential behavior features.

(2) When sessions are too long, the performance improvements of

NARM are declined. We consider the reason is that when a session

is too long, the user is very likely to click some items aimlessly, so

that the local encoder in NARM could not capture the user’s main

purpose in the current session.

5.3 Visualize the Attention Weights

To illustrate the role of the attention mechanism intuitively, we

present an example in Figure 6. The session instances are chosen

randomly from DIGINETICA. The depth of the color corresponds

to the importance of items given by equation (7). We have fol-

lowing observations from the example: (1) Overall, it is obvious

that not all items are related to the next click and almost all the

important items in the current session is continuous. This implies

that the users’ intentions in sessions are indeed localized, which is

one of the reasons why NARM can outperform the general RNN-

based model. (2) The most important items are often near the end

of the session. This is in line with people’s browsing behavior: a

user is very likely to click other items that are related to what

s/he has clicked just now. Recall that general RNN-based models

are able to model this fact, thus they can achieve fairly good

performance in session-based recommendation. (3) In some cases,

the most important items appear in the beginning or middle of

the session (e.g., in session 7974 or 4260). In this situation, we

believe that our NARM can perform better than general RNN-

based models because the attention mechanism could learn to pay

more attention to more important items regardless of its position

in one session.

6 CONCLUSION & FUTUREWORK

We have proposed the neural attentive recommendation machine

(NARM) with an encoder-decoder architecture to address the

session-based recommendation problem. By incorporating an at-

tention mechanism into RNN, our proposed approach can capture

both the user’s sequential behavior and main purpose in the

current session. Based on the sequential behavior feature and the

user purpose feature, we have applied NARM to predict a user’s

next click in the current session. We have conducted extensive

experiments on two benchmark datasets and demonstrated that

our approach can outperform state-of-the-art methods in terms

of different evaluation metrics. Moreover, we have performed an

analysis on user click behaviors and found that users’ intentions

are localized in most sessions, which proves the rationality of our

model.

As to future work, more item attributes, such as prices and

categories, may enhance the performance of ourmethod in session-

based recommendation. Meanwhile, both the nearest neighbor

sessions and the importance of different neighbors should give new

insights. Finally, the attention mechanism can be used to explore

the importance of attributes in the current session.

ACKNOWLEDGMENTS

The authors wish to thank the anonymous reviewers for their

helpful comments. This work is supported by the Natural Science

Foundation of China (61672322, 61672324), the Natural Science

Foundation of Shandong province (2016ZRE27468) and the Funda-

mental Research Funds of Shandong University.

REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender

systems: a survey of the state-of-the-art and possible extensions. IEEE
Transactions on Knowledge and Data Engineering, 17(6):734–749, 2005.

[2] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J. Chen,
M. Chrzanowski, A. Coates, G. Diamos, et al. Deep speech 2: end-to-end speech
recognition in english and mandarin. In Proceedings of the 33rd. International
Conference on Machine Learning, pages 173–182, 2016.

[3] S. Chen, J. L. Moore, D. Turnbull, and T. Joachims. Playlist prediction via metric
embedding. In Proceedings of the 18th. ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 714–722, 2012.

[4] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi, S. Gupta, Y. He,
M. Lambert, B. Livingston, et al. The youtube video recommendation system. In
Proceedings of the 4th. ACMConference on Recommender Systems, pages 293–296,
2010.

[5] L. De Vine, G. Zuccon, B. Koopman, L. Sitbon, and P. Bruza. Medical
semantic similarity with a neural language model. In Proceedings of the 23rd.
ACM International Conference on Conference on Information and Knowledge
Management, pages 1819–1822, 2014.

[6] A. M. Elkahky, Y. Song, and X. He. A multi-view deep learning approach for
cross domain user modeling in recommendation systems. In Proceedings of the
24th. International Conference on World Wide Web, pages 278–288, 2015.

[7] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep
recurrent neural networks. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing, pages 6645–6649, 2013.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEEConference on Computer Vision and Pattern Recognition,
pages 770–778, 2016.

[9] X. He and T.-S. Chua. Neural factorization machines for sparse predictive
analytics. In Proceedings of the 40th. International ACM SIGIR conference on
Research and Development in Information Retrieval, pages 355–364, 2017.

[10] X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua. Fast matrix factorization for online
recommendation with implicit feedback. In Proceedings of the 39th. International
ACM SIGIR conference on Research and Development in Information Retrieval,
pages 549–558, 2016.

[11] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural collaborative
filtering. In Proceedings of the 26th. International Conference onWorld Wide Web,
pages 173–182, 2017.

[12] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. Session-based
recommendations with recurrent neural networks. In Proceedings of the 4th.
International Conference on Learning Representations, 2016.

[13] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. R. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, and T. N. Sainath. Deep neural networks for acoustic
modeling in speech recognition: the shared views of four research groups. IEEE
Signal Processing Magazine, 29(6):82–97, 2012.

[14] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[15] D. Kingma and J. Ba. Adam: a method for stochastic optimization. In Proceedings
of the 4th. International Conference on Learning Representations, 2015.

[16] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8):30–37, 2009.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In Proceedings of the 25th. International
Conference on Neural Information Processing Systems, pages 1097–1105, 2012.

[18] P. Li, Z. Wang, W. Lam, Z. Ren, and L. Bing. Salience estimation via variational
auto-encoders for multi-document summarization. In Proceedings of the 31st.
AAAI Conference on Artificial Intelligence, pages 3497–3503, 2017.

[19] P. Li, Z. Wang, Z. Ren, L. Bing, and W. Lam. Neural rating regression with
abstractive tips generation for recommendation. In Proceedings of the 40th.
International ACM SIGIR conference on Research and Development in Information
Retrieval, pages 345–354, 2017.

[20] G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-to-item
collaborative filtering. IEEE Internet Computing, 7(1):76–80, 2003.

[21] Q. Liu, T. Chen, J. Cai, and D. Yu. Enlister: baidu’s recommender system for
the biggest chinese q&a website. In Proceedings of the 6th. ACM Conference on
Recommender Systems, pages 285–288, 2012.

[22] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In Proceedings
of the 26th. International Conference on Neural Information Processing Systems,
pages 3111–3119, 2013.

[23] A. Mild and T. Reutterer. An improved collaborative filtering approach
for predicting cross-category purchases based on binary market basket data.
Journal of Retailing and Consumer Services, 10(3):123–133, 2003.

[24] A. Mnih and G. Hinton. A scalable hierarchical distributed language model. In
Proceedings of the 21st. International Conference on Neural Information Processing
Systems, pages 1081–1088, 2008.

[25] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa. Using sequential and non-
sequential patterns in predictive web usage mining tasks. In Proceedings of the
IEEE International Conference on Data Mining, pages 669–672, 2002.

[26] P. Ren, Z. Chen, Z. Ren, F. Wei, J. Ma, and M. de Rijke. Leveraging contextual
sentence relations for extractive summarization using a neural attention model.
In Proceedings of the 40th. International ACM SIGIR conference on Research and
Development in Information Retrieval, pages 95–104, 2017.

[27] Z. Ren, S. Liang, P. Li, S. Wang, and M. de Rijke. Social collaborative viewpoint
regression with explainable recommendations. In Proceedings of the 10th. ACM
International Conference on Web Search and Data Mining, pages 485–494, 2017.

[28] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: bayesian
personalized ranking from implicit feedback. In Proceedings of the 25th.
Conference on Uncertainty in Artificial Intelligence, pages 452–461, 2009.

[29] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Factorizing personalized
markov chains for next-basket recommendation. In Proceedings of the 19th.
International Conference on World Wide Web, pages 811–820, 2010.

[30] O. Rsoy and C. Cardie. Deep recursive neural networks for compositionality
in language. In Proceedings of the 27th. International Conference on Neural
Information Processing Systems, pages 2096–2104, 2014.

[31] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann machines for
collaborative filtering. In Proceedings of the 24th. International Conference on
Machine Learning, pages 791–798, 2007.

[32] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th. International Conference
on World Wide Web, pages 285–295, 2001.

[33] J. B. Schafer, J. Konstan, and J. Riedl. Recommender systems in e-commerce. In
Proceedings of the 1st. ACM Conference on Electronic Commerce, pages 158–166,
1999.

[34] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie. Autorec: autoencoders meet
collaborative filtering. In Proceedings of the 24th. International Conference on
World Wide Web, pages 111–112, 2015.

[35] L. Shang, Z. Lu, and H. Li. Neural responding machine for short-text
conversation. In Proceedings of the 53rd. Annual Meeting of the Association for
Computational Linguistics, pages 1577–1586, 2015.

[36] G. Shani, D. Heckerman, and R. I. Brafman. Anmdp-based recommender system.
Journal of Machine Learning Research, 6(1):1265–1295, 2005.

[37] R. Socher, C. Y. Lin, A. Y. Ng, and C. D. Manning. Parsing natural scenes and
natural language with recursive neural networks. In Proceedings of the 28th.
International Conference on Machine Learning, pages 129–136, 2011.

[38] H. Song, Z. Ren, S. Liang, P. Li, J. Ma, and M. de Rijke. Summarizing answers
in non-factoid community question-answering. In Proceedings of the 10th. ACM
International Conference on Web Search and Data Mining, pages 405–414, 2017.

[39] X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques.
Advances in Artificial Intelligence, 2009.

[40] Y. K. Tan, X. Xu, and Y. Liu. Improved recurrent neural networks for session-
based recommendations. In Proceedings of the 1st. Workshop on Deep Learning
for Recommender Systems, pages 17–22, 2016.

[41] P. Wang, J. Guo, Y. Lan, J. Xu, S. Wan, and X. Cheng. Learning hierarchical
representationmodel for nextbasket recommendation. In Proceedings of the 38th.
International ACM SIGIR conference on Research and Development in Information
Retrieval, pages 403–412, 2015.

[42] M. Weimer, A. Karatzoglou, Q. V. Le, and A. Smola. Maximum margin matrix
factorization for collaborative ranking. In Proceedings of the 20th. International
Conference on Neural Information Processing Systems, pages 1–8, 2007.

[43] Y. Wu, C. Dubois, A. X. Zheng, and M. Ester. Collaborative denoising auto-
encoders for top-n recommender systems. In Proceedings of the 9th. ACM
International Conference on Web Search and Data Mining, pages 153–162, 2016.

[44] G. E. Yap, X. L. Li, and P. S. Yu. Effective next-items recommendation via
personalized sequential pattern mining. In Proceedings of the 17th. International
Conference on Database Systems for Advanced Applications, pages 48–64, 2012.

[45] Y. Zhang, H. Dai, C. Xu, J. Feng, T. Wang, J. Bian, B. Wang, and T.-Y. Liu.
Sequential click prediction for sponsored searchwith recurrent neural networks.
In Proceedings of the 28th. AAAI Conference on Artificial Intelligence, pages 1369–
1375, 2014.

[46] A. Zimdars, D. M. Chickering, and C. Meek. Using temporal data for making
recommendations. In Proceedings of the 17th. Conference on Uncertainty in
Artificial Intelligence, pages 580–588, 2001.

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	2.1 Traditional Methods
	2.2 Deep Learning based Methods

	3 METHOD
	3.1 Session-based Recommendation
	3.2 Overview
	3.3 Global Encoder in NARM
	3.4 Local Encoder in NARM
	3.5 NARM Model

	4 EXPERIMENTAL SETUP
	4.1 Dataset
	4.2 Baseline Methods
	4.3 Evaluation Metrics and Experimental Setup
	4.4 Comparison among Different Decoders
	4.5 Comparison against Baselines

	5 ANALYSIS
	5.1 Influence of Using Different Features
	5.2 Influence of Different Session Lengths
	5.3 Visualize the Attention Weights

	6 CONCLUSION & FUTURE WORK
	References

