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Abstract

Pre-trained language models (LMs) store knowledge in
their parameters and can generate informative responses
when used in conversational systems. However, LMs suffer
from the problem of “hallucination:” they may generate
plausible-looking statements that are irrelevant or factually
incorrect. To address this problem, we propose a contrastive
learning scheme, named MixCL. A novel mixed contrastive
objective is proposed to explicitly optimize the implicit
knowledge elicitation process of LMs, and thus reduce
their hallucination in conversations. We also examine
negative sampling strategies of retrieved hard negatives
and model-generated negatives. We conduct experiments
on Wizard-of-Wikipedia, a public, open-domain knowledge-
grounded dialogue benchmark, and assess the effectiveness
of MixCL. MixCL effectively reduces the hallucination of
LMs in conversations and achieves the highest performance
among LM-based dialogue agents in terms of relevancy
and factuality. We show that MixCL achieves comparable
performance to state-of-the-art KB-based approaches while
enjoying notable advantages in terms of efficiency and
scalability.

1 Introduction
Open-domain dialogue agents have received increasing
attention in recent years (Freitas et al. 2020; Huang, Zhu,
and Gao 2020). In an engaging open-domain dialogue, a
large amount of knowledge, such as commonsense (Young
et al. 2018) and factual knowledge (Dinan et al. 2019), is
involved. To integrate knowledge into dialogue agents, KB-
based methods have been proposed to explicitly acquire
knowledge from knowledge bases (Young et al. 2018;
Dinan et al. 2019). However, KB-based methods suffer
from problems of retrieval error (Liu et al. 2022) and
inefficiency (Xu et al. 2022). Meanwhile, recent years
have witnessed a rapid development of pre-trained language
models (LMs) (Devlin et al. 2019; Brown et al. 2020) and
their applications to dialogue tasks (Thoppilan et al. 2022).
Large LMs implicitly store knowledge in their parameters
during the pretraining stage (Petroni et al. 2019; Zhou
et al. 2020) and thus, to some extent, they can serve as
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Figure 1: Results of a pilot experiment where annotators
were asked to label 200 responses generated by BART on
the Wizard-of-Wikipedia dataset for hallucination.

knowledge bases to ground open-domain dialogues (Zhao,
Wu, and Xu 2020). Such approaches, known as LM-based
methods, achieve promising performance in generating
informative responses and obviate the drawbacks of KB-
based methods. However, LM-based methods have the
problem of “hallucination” (Shuster et al. 2021; Ji et al.
2022): they generate plausible-looking statements that are
irrelevant or factually incorrect.

To understand the severity of hallucinations of LMs,
we conduct a pilot experiment. We sample 200 responses
generated by BART (Lewis et al. 2020) on the Wizard-of-
Wikipedia dataset (Dinan et al. 2019) for various topics and
conversation turns. These responses are annotated by three
well-informed experts in terms of knowledge relevancy and
factuality. Based on the results, we group the hallucinations
of LMs into two types: intrinsic hallucinations and extrinsic
hallucinations. Intrinsic hallucinations are non-factual
statements, such as incorrectly predicting a celebrity’s
birthday. Extrinsic hallucinations are irrelevant or out-of-
context responses, such as the a description of the history of
football when the user asks the number of teams currently
in the NFL. Fig. 1 summarizes the outcomes: intrinsic and
extrinsic hallucinations account for 24% and 27% of the
responses, respectively.

The problem of hallucinations is mainly attributable to
the optimization recipes: the commonly used maximum
likelihood estimation (MLE) with teacher forcing training
encourages the model to imitate the training data
blindly, leading to model hallucinations at inference
time (Kang and Hashimoto 2020). Most studies on tackling
hallucination in conversations focus on KB-based methods
and use pre-retrieval (Shuster et al. 2021) or post-editing
techniques (Dziri et al. 2021) to improve faithfulness; the
hallucination of LM-based agents in eliciting knowledge
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inside LMs’ parameters is still underexplored.
In this paper, we propose Mixed Contrastive Learning

(MixCL) to alleviate the hallucinations of LM-based
dialogue agents. MixCL explicitly samples the most
confusing knowledge to the model and reduces its
generation probability by contrasting it with the ground-
truth. To this end, two novel steps are used by MixCL:
(i) negative sampling, and (ii) mixed-contrastive learning.
In the former, we sample the most confused negative
knowledge by retrieving from the corpus or deriving via
model bootstrapping. In the latter, we propose mixed-
contrastive learning under the inspiration of mix-up data
augmentation (Zhang et al. 2018), which mixes the positive
and negative at span level. Moreover, we propose two mixed
strategies regarding the two types of hallucination: entity-
based mix-up and constituency-based mix-up. Finally,
MixCL is optimized in an end-to-end manner, thus avoiding
the retrieval step during inference and instead using the
knowledge inside its parameters.

We conduct experiments on Wizard-of-Wikipedia (Dinan
et al. 2019), an open-domain, knowledge-grounded dialogue
dataset. Extensive experiments show that MixCL improves
the informativeness and relevancy of the responses.
Compared with previous LM-based methods (Zhao, Wu, and
Xu 2020; Xu et al. 2022; Liu et al. 2022), MixCL achieves
improvements by 5% to 15% in terms of response quality
and relevancy. Moreover, MixCL achieves comparable
performance as state-of-the-art KB-based methods (e.g.,
KnowledGPT (Zhao et al. 2020)), while speeding up 5×
in model inference and showing superior scalability. The
effectiveness of MixCL is also verified through human
evaluation and ablation experiments.

Our contributions are as follows: (i) We propose MixCL,
which reduces hallucinations of LMs in conversation
through contrastive learning. (ii) We propose a hard
negative sampling strategy to obtain the most confused
negative knowledge (see Section 5.1). (iii) We propose
a mix contrastive objective to optimize the model at
span level (see Section 5.2). (iv) Experiments on the
Wizard-of-Wikipedia dataset show that MixCL effectively
reduces the hallucinating content produced by the LM
and achieves comparable performance to KB-based
approaches.1

2 Related Work
2.1 Knowledge-Grounded Dialogues
In open-domain knowledge-grounded dialogues (KGDs),
people respond to each other’s utterances in a meaningful
way by integrating knowledge (Young et al. 2018; Huang,
Zhu, and Gao 2020). To integrate knowledge, KB-based
methods have been explored (Liu et al. 2018; Young
et al. 2018; Dinan et al. 2019); they retrieve knowledge
from a corpus through additional information retrieval (IR)
modules. Studies on KB-based methods focus on knowledge
selection (Meng et al. 2020; Shuster et al. 2021) and
knowledge-grounded response generation (Zhao et al. 2020;
Zheng and Huang 2021). However, KB-based methods

1We release our code at https://github.com/sunnweiwei/MixCL.

suffer from the problems of retrieval errors (Liu et al.
2022), inefficiencies (Xu et al. 2022), and multi-granularity
knowledge integration (Wu et al. 2022).

2.2 Language Models as Knowledge Bases
Recent years have witnessed a rapid development of
language models (LMs) (Brown et al. 2020) and LM-based
dialogue agents (Thoppilan et al. 2022). Large LMs store
knowledge into their parameters during pre-training and can
generate informative responses in conversations (Zhao, Wu,
and Xu 2020). Petroni et al. (2019) show that LMs can serve
as knowledge bases for downstream tasks (e.g., question
answering (Roberts, Raffel, and Shazeer 2020)). On this
basis, Zhao, Wu, and Xu (2020) show that LMs can ground
open-domain dialogues using their implicit knowledge.
Madotto et al. (2020) embed knowledge bases into model’s
parameters for end-to-end task-oriented dialogues. Roller
et al. (2021) finetune LMs on KGD data. Cui et al. (2021)
propose knowledge-enhanced finetuning methods to handle
unseen entities. Xu et al. (2022) propose a topic-aware
adapter to adapt LMs in KGDs. Liu et al. (2022) propose
a multi-stage prompting approach for triggering knowledge
in LMs. Wu et al. (2022) propose lexical knowledge
internalization to integrate token-level knowledge into the
model’s parameters. However, existing LM-based methods
suffer from the problem of hallucination. In this paper,
we optimize the implicit knowledge eliciting process, i.e.,
reduce hallucination of LMs in KGD, via the proposed
contrastive learning framework MixCL.

2.3 Contrastive Learning
Contrastive learning (CL) (Chopra, Hadsell, and LeCun
2005; Chen et al. 2020b) is based on the idea that
similar samples should also be close in representation
space, and has seen applications in NLP (Gao, Yao,
and Chen 2021). CL has been used for optimizing
knowledge retrieval processes (Karpukhin et al. 2021; Xiong
et al. 2021), where the model learns to identify positive
knowledge from negatives. On the task of neural text
generation, CL (Jiang et al. 2022), a.k.a. unlikelihood
training (Welleck et al. 2020) or negative training (He
and Glass 2020), alleviates undesirable properties of the
generated output, e.g., repetition (Shirai et al. 2020; Jiang
et al. 2022), maliciousness (He and Glass 2020), dullness (Li
et al. 2020b, 2022), or inconsistency (Li et al. 2020a).
Moreover, Cao and Wang (2021) propose a sentence level
contrastive learning method to reduce the hallucinations
of text summarization model. Unlike existing studies, we
propose a mixed contrastive learning framework MixCL that
eliminates the hallucination at the span level with effective
negative sampling strategies.

3 Problem Formulation
Let x, y, and k be the dialogue context, the corresponding
response, and the ground-truth knowledge, respectively. As
illustrated in Fig. 2, given a knowledge corpus K, a dialogue
agent learns to predict an informative response y based
on the dialogue context x using the knowledge in K. As
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(a) KB-based dialogue agents
explicitly retrieve text-based
knowledge from corpus.
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(b) LM-based dialogue agents
store knowledge in LM para-
meters and generate responses
using implicit knowledge.

Figure 2: Types of dialogue agents.

discussed earlier, two approaches are studied in KGD, KB-
based methods and LM-based methods. In this paper, we
focus on the latter one.

KB-based Methods. KB-based dialogue agents (Dinan
et al. 2019) ground the response generation by explicitly
retrieving knowledge from K. Two sub-modules, i.e.,
knowledge retriever and response generator, are employed
by KB-based approaches, as shown in Fig. 2 (a).

LM-based Methods. In this paper, we explore language
models as knowledge bases for dialogue agents (Zhao, Wu,
and Xu 2020; Xu et al. 2022), as illustrated in Fig. 2 (b). In
LM-based approaches, the LMs are first pre-trained on K to
store the knowledge in their parameters. Then, the models
directly generate y given x using the knowledge in their
parameters and getting rid of the explicit retrieval step.

4 Preliminaries
We propose a LM-based dialogue agent for open-domain
KGD. The proposed model pθ(y|x) is based on a
transformer-based language model with encoder-decoder
architecture. The model is first pre-trained on the corpus K
and then finetuned on dialogue data to generate informative
responses.

Pre-training on Knowledge Corpus. We employ BART
(Lewis et al. 2020) as the pre-trained transformer, which is
pre-trained by denoising self-supervised learning:

LLM = −Ek∼K log pθ(k|k̂), (1)
where K is a text-based knowledge corpus (e.g., Wikipedia),
k is a text sampled from knowledge corpus K, and k̂ denotes
corrupted text by corruption functions (e.g., masking,
deletion, infilling, etc.; Lewis et al. (2020)).

Finetuning on Dialogue Datasets. With the pre-trained
LM, the model generates the response y given x without
explicit knowledge retrieval step (Zhao, Wu, and Xu 2020;
Xu et al. 2022). Maximum likelihood estimation (MLE)
training loss on dialogue data with paired (x, y) is employed
by previous methods. In MLE, the model learns to predict
the ground-truth tokens for each step in a teacher forcing
paradigm (Zhao, Wu, and Xu 2020; Xu et al. 2022):

LMLE = − log pθ(y|x) = −
|y|∑
t=1

log pθ(yt|y<t, x). (2)

However, despite its effectiveness in generating informative
responses, MLE loss encourages the model to imitate the
training data blindly and leads to model hallucination (Kang
and Hashimoto 2020). Studies have found that models
trained with standard MLE may over-rely on previously
predicted tokens, exacerbating error propagation (Wang and
Sennrich 2020). As a result, during the inference stage,
as the generated sequence grows, the errors accumulate
along the sequence, and the model tends to amplify errors
and generate hallucinating contents. We propose a novel
contrastive learning framework MixCL to address this
problem.

5 MixCL
Next, we present the proposed MixCL framework for
addressing the hallucination of LMs. MixCL explicitly
samples negative knowledge (i.e., non-factual or irrelevant
knowledge) and reduces the generation probability of
negative tokens by LMs through contrastive learning. As
illustrated in Fig. 3, MixCL consists of two steps: negative
sampling and mixed contrastive learning. In this section, we
first present the negative sampling methods, then the mixed
contrastive learning, and finally our optimization strategies.

5.1 Negatives Sampling
We sample negative knowledge for the dialogue context
to construct training examples for contrastive learning.
Formally, let z+ be positive knowledge, i.e., a factual
and relevant knowledge snippet, and let QPos(x) be the
collection of positive knowledge regarding x, where the
z+ ∼ QPos(x) is sampled from it. Here, QPos(x) can
be obtained through human labeling (Dinan et al. 2019)
or heuristic methods (Zhao et al. 2020). We define z−

as negative knowledge, i.e., a non-factual or irrelevant
knowledge snippet for x. Then, negative sampling is applied
to construct the snippets z− where the model is most likely
to get confused. We introduce two methods for negative
sampling, i.e., retrieved negatives and model-generated
negatives, as illustrated in Fig. 3.

Retrieved Negatives. For a given x, a retrieval tool Ret(∗)
is employed to retrieve irrelevant but potentially confusing
knowledge from knowledge corpus K:

QRet(x) = {z−|z− ∈ Ret(x,K), z− /∈ QPos(x)}, (3)

where Ret(·, ·) is implemented as TF-IDF retriever (Dinan
et al. 2019), and z− /∈ QPos(x) imposes the constraint that
negative knowledge snippets should not be included in the
positive knowledge.

Model-Generated Negatives. We also exploit a model
bootstrapping approach, in which we generate knowledge by
a model pθ(z|x) and retain the examples where hallucination
exist. We define:

QModel(x) = {z−|z− ∼ pθ(z|x), z− ∩QPos(x) = ∅}, (4)

where z− ∼ pθ(z|x) denotes a negative knowledge snippet
sampled from the LM with θ, and z− ∪ QPos(x) = ∅
imposes the constraint that negative knowledge snippets
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Figure 3: Overview of MixCL. MixCL consists of two steps: (i) negative sampling (Section 5.1), which samples most confusing
negative knowledge to the model, and (ii) mixed contrastive learning (Section 5.2), which reduces the generation probability of
negative tokens through mixed contrastive learning.

should not be included in the positive knowledge, which
is implemented with a natural language inference (NLI)
toolkit.2

On the basis of the above two methods, we define
the constructed negative collection QNeg(x) with a hyper-
parameter β ∈ [0, 1] to control the relative contribution of
the methods:

QNeg(x) = βQRet(x) + (1− β)QModel(x). (5)

5.2 Mixed Contrastive Learning
Based on the positive knowledge z+ and the sampled
negative knowledge z−, we introduce a contrastive learning
framework to identify positive knowledge from negatives:

LCL = E
z+∼QPos(x),{z−

i }M
i=1

iid∼Z
l(x, z+, {z−i }Mi=1, θ), (6)

where l denotes a contrastive loss function that is typically
defined as cross-entropy loss lce

3 (Gao, Yao, and Chen
2021; Cao and Wang 2021), and M denotes the number of
negatives.

However, lce only considers token-level or sentence-
level contrast. It ignores fine-grained span-level contrast
even though hallucinations typically exists at the span
level. Therefore, inspired by work on mix-up data
augmentation (Zhang et al. 2018; Kim et al. 2020; Shi,
Livescu, and Gimpel 2021; Zhang, Yang, and Yang 2022),
we propose a mixed contrast objective, which mixes the
positive and negative examples into a sequence at the
span level. As illustrated in Fig. 3, the proposed mixed
contrastive learning method has three parts: (i) extracting
spans, which extracts meaningful spans from both positive
and negative knowledge; (ii) mixing examples, which mixes
positive and negative knowledge using the extracted spans;
and (iii) mixed-contrast loss, which optimizes the model at
the span level through contrastive learning.

Extracting Spans. We extract the key components from
the both positive and negative knowledge, z+ and z−.
Regarding the two types of hallucinations, i.e., the intrinsic
and extrinsic, we design two extraction strategies. As
part of the pilot experiment reported in Section 1, we

2https://huggingface.co/roberta-large-mnli
3lce(x, z

+, {z−i }Mi=1, θ)=− log exp pθ(z
+|x)

exp pθ(z
+|x)+

∑M
i=1 exp pθ(z

−
i |x)

.

find that intrinsic hallucinations are typically associated
with confused entities. Therefore, we use named entity
recognition (NER)4 to extract entities of various types
e.g. person and time. Moreover, we find that extrinsic
hallucination is mainly triggered by the emergence of
irrelevant sentence fragments in the text. Therefore, we use
constituency parsing (CP)5 to extract sentence constituents,
e.g., noun and particle. Through the two strategies, we
extract sequence spans from z+ and z−, respectively.

Example. Consider knowledge snippets about the French
soccer player Thierry Henry. A statement like He was
born and raised in Paris would be in z+, while the span
“Montreal, Quebec, Canada” could be extracted from a
snippet such as in He was born in Montreal, Quebec,
Canada in z−.

Mixing Examples. Based on the extracted spans, we mix
the two examples z+ and z− into a mixed sequence z̃ via
a mix-up function: z̃ = Mix(z+, z−). The mix-up function
randomly selects a span in z+, and then selects a span with
the same type in z− to substitute it. We define a sequence ϕ
with the same length of z̃, which annotates the tokens in z̃
as 1 if they come from z+ and 0 if they come from z−.

In the earlier Thierry Henry example, the span “Paris”
in a snippet in z+ can be selected and substituted by the
corresponding ones from a snippet in z−, such as “Montreal,
Quebec, Canada.”

Mixed-Contrast Loss. Based on the mixed sequence z̃
and ϕ, we design a loss function lmix as follows:

lmix(z
+, z−) =

−
∑|z̃i|

j=1[ ϕi,j log pθ(z̃i,j |z̃i,<j , x) +

(1− ϕi,j) log(1− pθ(z̃i,j |z̃i,<j , x))],

(7)

where z̃i = Mix(z+, z−i ) is a mixed sequence of z+ and z−i ,
and ϕi,j denotes the sign of token z̃i,j , which equals 1 for
positive tokens and 0 for negative tokens. Using the negative
collection QNeg(x) defined in Eq. 5, we formalize the mixed
contrast objective LMCL as:∑

z+∼QPos(x)

∑i=1,...,M

z−
i ∼QNeg(x)

lmix(x, z
+, z−i , θ). (8)

4https://spacy.io/api/entityrecognizer/
5https://stanfordnlp.github.io/stanza/constituency.html
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5.3 Optimization
During finetuning, MixCL is optimized by minimizing
LMCL. Two additional loss are considered in training, i.e.,
LLM, LMLE. LLM is used to alleviate catastrophic knowledge
forgetting (Devlin et al. 2019; Chen et al. 2020a) and LMLE is
used to optimize the response generation ability. Therefore,
the final training objective is defined as:

J (θ) = α1LMLE + α2LMCL + α3LLM, (9)

where three losses are optimized jointly and α1, α2, α3

denote the weights of the three losses, respectively.

6 Experimental Setup
6.1 Datasets and Evaluation Metrics
We conduct experiments on the Wizard of Wikipedia (WoW)
dataset. WoW is built with crowd-sourcing and employs
Wikipedia as the knowledge corpus. WoW consists of
22,311 conversations over 1,365 general topics that range
from e-books to toga parties to showers. The ground-truth
knowledge used in each turn is manually labeled. The WoW
test set is split into test seen and test unseen based on
whether the topic appears in the training set. We evaluate
our methods on both test seen and test unseen.

We choose F1, ROUGE, BLEU, MT, Knowledge-
F1 (KF1), Entity-F1 (EF1), and Accuracy (Acc) as
metrics. F1 (Dinan et al. 2019) calculates the unigram
F1 between the generated text and the ground-truth text.
For ROUGE (Lin 2004) we use ROUGE-L (RL for
short) following previous work. BLEU (Papineni et al.
2002) we use BLEU-2 and BLEU-4 (or B2 and B4 for
short) and use the implementation in the NLTK Toolkit.
MT (Meteor) (Denkowski and Lavie 2014) is based
on the harmonic mean of unigram precision and recall.
Knowledge-F1 (Dinan et al. 2019) (or KF1 for short)
calculates the F1 between the generated response and
the ground-truth knowledge sentence, which indicates the
informativeness of a response. Acc measures the knowledge
selection accuracy. As we skip the knowledge selection step,
we select knowledge by matching the generated response
with each knowledge candidate in WoW using the F1 score.
Entity-F1 (or EF1 for short) identifies entities in text using
Spacy, deletes the non-entity words, and calculates the F1
score between the modified generated text and the ground-
truth response. EF1 eliminates the impact of the stop-word
and focuses on the accuracy of entities.

In addition, we randomly sample 100 examples from
the test seen and test unseen segments of the test
set, respectively, and recruit three experts for human
evaluation. Each annotator is presented with examples
that come with dialogue context and model responses.
Four metrics are considered in the human evaluation:
Informativeness, which measures whether the response is
knowledge-inclusive; Relevancy, which measures whether
the response’s content is relevant to the dialogue;
Factuality, which measures whether the information in the
response is factually correct;6 and Humanlikeness, which

6The human annotators used Google to check the factuality of
the responses.

measures whether the response is human-like in its fluency
and naturalness. The annotators are asked to assign a score
in {0, 1} (representing “non-factual” and “factual”) for
factuality, and a score in {0, 1, 2} (representing “bad” “fair”,
and “good”) for the others.

6.2 Baselines
We compare MixCL with baselines of two categories:
(i) KB-based methods that use additional IR modules for
explicit knowledge retrieval, and (ii) LM-based methods that
use LMs as a knowledge base. All models are re-evaluated
with the same evaluation function using the official public
checkpoints.

The KB-based methods we consider are: TMN (Dinan
et al. 2019) (50M), which combines a transformer with
an external memory network to select knowledge and
generate a response; DukeNet (Meng et al. 2020) (150M),
which is the best performing KB-based method without
using pre-trained LMs and which models knowledge shift
with a dual learning scheme; KnowledGPT (Zhao et al.
2020) (227M), which exploits pre-trained LMs in a KB-
based approach, selects knowledge using BERT, generates
responses using GPT-2, and optimizes the two modules
jointly with reinforcement learning; it achieves state-of-the-
art performance. We also introduce KnowBART (600M),
a KB-based model that selects knowledge using RoBERTa
and generates responses using BART-Large.

The KB-based methods listed above retrieve knowledge
under oracle conditions, i.e., they are given a small subset of
Wikipedia with roughly ten passages that definitely contain
the ground-truth knowledge (Dinan et al. 2019; Liu et al.
2022). We also consider KB-based methods under realistic
experimental conditions, where passages from the full
knowledge corpus (i.e., Wikipedia) are retrieved. We employ
the state-of-the-art passage retrieval model GENRE (Cao
et al. 2021) from the KILT leaderboard (Petroni et al. 2021),
which is reported to outperform competitors (e.g., DPR and
BM25) by a substantial margin on WoW.

The LM-based methods that we consider are: GPT-
2 (Zhao, Wu, and Xu 2020) (345M),which finetunes GPT-2
on knowledge-grounded dialogue data; BlenderBot (Roller
et al. 2021) (400M), which pre-trains a transformer with
encoder-decoder architecture on reddit data, and then
finetunes the model on KGD data; KnowExpert (Xu et al.
2022) (117M), which uses a topic-aware adapter that first
clusters Wikipedia using a topic model and then employs a
mix-of-adapter architecture to adapt a GPT-2 model to open-
domain dialogues; MSDP (Liu et al. 2022) (357M), which
uses a multi-stage prompting model, designs task-specific
prompts with task instructions and in-context examples,
and uses Megatron-LM (Shoeybi et al. 2019) to produce
knowledge and response in a two-stage process.

6.3 Implementation Details
We implement MixCL using BART-Large (400M) (Lewis
et al. 2020) in HuggingFace’s Transformers library. We
use Wikipedia as the knowledge corpus K, as it is
used as knowledge corpus by WoW. We determine the
hyperparameters through pilot experiments. We set the
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Test seen Test unseen

Method F1 RL B2 B4 MT KF1 EF1 Acc F1 RL B2 B4 MT KF1 EF1 Acc

KB-based methods under realistic conditions
TMN (Dinan et al. 2019) 17.3 17.0 5.7 1.1 14.8 15.8 8.7 15.2 14.4 14.5 3.3 0.3 11.5 9.4 2.1 8.6
DukeNet (Meng et al. 2020) 18.5 17.7 6.4 1.9 16.0 18.5 12.0 20.6 15.9 15.9 4.8 1.1 13.7 14.7 8.0 14.3
KnowledGPT (Zhao et al. 2020) 21.1 20.1 8.9 3.4 20.0 22.2 15.5 24.3 19.5 18.4 8.0 2.6 18.3 20.0 11.7 20.2
KnowBART 21.1 18.9 8.5 3.3 17.8 21.3 16.2 24.2 21.0 18.3 8.9 3.6 17.9 22.5 16.2 24.0

KB-based methods under oracle conditions
DukeNet (Meng et al. 2020) 19.3 18.7 7.5 2.5 17.2 19.6 13.2 22.1 17.1 17.0 6.0 1.7 15.2 16.5 9.2 16.8
KnowledGPT (Zhao et al. 2020) 22.0 20.8 9.9 3.7 20.9 23.8 16.9 26.3 20.5 19.5 8.7 3.0 19.3 22.1 13.3 22.6
KnowBART 22.1 19.6 9.1 3.7 18.1 23.1 18.0 26.8 22.7 20.1 9.8 4.3 18.7 24.1 18.4 27.5

LM-based methods
GPT-2 (Zhao, Wu, and Xu 2020) 19.6 18.5 7.8 1.4 17.8 17.9 13.3 15.4 18.3 17.3 6.5 0.8 16.1 14.6 7.2 8.4
BlenderBot (Roller et al. 2021) 18.8 19.4 7.7 2.3 18.0 18.2 13.1 16.7 17.8 16.9 5.5 0.8 15.0 15.7 7.1 9.6
KnowExpert (Xu et al. 2022) 18.7 18.6 6.7 1.3 16.5 14.1 9.8 12.6 16.7 17.2 5.4 0.6 14.5 11.8 5.5 9.2
MSDP (Liu et al. 2022) 17.8 16.5 6.1 1.9 18.2 21.7 13.9 18.4 16.9 16.1 5.5 1.1 16.2 20.3 8.4 16.1

Ours 21.6 20.5 9.2 2.7 20.5 22.3 16.3 20.4 19.6 18.8 7.4 1.4 18.0 18.0 11.6 14.4

Table 1: Evaluation results on Wizard-of-Wikipedia. The first group lists KB-based methods under realistic conditions. The
second group lists KB-based methods under oracle conditions. The third group lists LM-based methods, including MixCL. We
highlight the results of MixCL that significantly exceed the previous-best LM-based methods in boldface (t-test, p < 0.05). We
also highlight the best results of previous KB-based methods and LM-based methods by underlining them, respectively.

weight of the language model loss α3 to 0.3 at initialization
and linearly decay until 0. We set α1 and α2, i.e., the
weight of the MLE loss and MCL loss, to 0.4 and 0.3,
respectively, and linearly increase to 0.5 and 0.5. We use
greedy decoding in testing. More details are available at
https://github.com/sunnweiwei/MixCL.

7 Experimental Results
7.1 Results of Automatic Evaluation
Table 1 shows the results of automatic evaluation metrics.
Overall, MixCL achieves the highest scores of the LM-
based methods and competitive results compared to the KB-
based methods under realistic conditions. Compared with
previous LM-based methods (the third group in Table 1),
MixCL achieves the highest scores on almost all metrics.
For example, MixCL gets F1 = 21.6, B4 = 2.7 on test
seen and F1 = 19.6, B4 = 1.4 on test unseen, with about
5% to 15% relative improvements over previous-best LM-
based baselines. Moreover, we find a dilemma with the
previous LM-based methods in terms of response quality
(e.g., F1, RL, B2) and knowledge relevance (e.g., KF1, EF1,
Acc). For example, MSDP performs well on knowledge
relevance at the expense of response quality, while GPT-
2 and BlenderBot show the opposite. MixCL, on the other
hand, performs well on both fronts.

Furthermore, compared with KB-based methods (the
first block in Table 1), we find that MixCL outperforms
two non-LM methods (DukeNet and TMN) by a large
margin. Compared to KnowledGPT and KnowBART,
which combine LMs with the KB-based approach, MixCL
outperforms them on test seen. On test unseen, MixCL lags
behind the best performing KB-based baselines, probably
due to knowledge forgetting issues.

Methods Test seen Test unseen

Info. Rel. Fact. Hum. Info. Rel. Fact. Hum.

DukeNetK 1.44 1.22 0.71 1.16 1.21 1.08 0.72 1.03
KnowledGPTK 1.67 1.47 0.87 1.73 1.63 1.23 0.83 1.36
KnowBARTK 1.67 1.57 0.89 1.70 1.68 1.56 0.91 1.44

KnowExpertL 1.45 1.36 0.62 1.45 1.49 1.26 0.59 1.15
MSDPL 1.20 0.96 0.71 0.98 1.28 1.18 0.82 1.05
BARTL 1.51 1.45 0.76 1.58 1.50 1.47 0.82 1.40

OursL 1.71 1.55 0.89 1.77 1.67 1.53 0.87 1.47

Human 1.84 1.85 0.98 1.96 1.83 1.85 0.95 1.95

Table 2: Human evaluation results. Methods marked with K

denote KB-based methods, and those marked with L denote
LM-based methods. The four metrics (Info., Rel., Fact.,
and Hum.) denote informativeness, relevance, factuality, and
humanlikeness, respectively.

Finally, under oracle conditions, the KB-based methods
(the second group in Table 1) show better results
than MixCL. However, the manually selected knowledge
candidates include the ground-truth, which is unavailable in
realistic scenarios.

7.2 Results of Human Evaluation
Table 2 shows the human evaluation results. The Fleiss’
kappa value is above 0.60, indicating substantial agreement
among the annotators. MixCL consistently outperforms
LM-based baselines on all metrics, and also outperforms
KB-based baselines in metrics. MixCL is capable of
generating more informative responses compared to
previous LM-based methods. Moreover, MixCL effectively
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Methods Test seen Test unseen

F1 B4 KF1 F1 B4 KF1

Base model 21.6 2.7 22.3 19.6 1.4 18.0

-w/o LMCL 21.0↓0.6 2.0↓0.7 19.1↓3.2 19.1↓0.5 1.0↓0.4 16.9↓1.1
-w/o QNeg(∗) 20.8↓0.8 2.4↓0.3 20.8↓1.5 19.0↓0.6 1.1↓0.3 17.4↓0.6
-w/o QModel(∗) 21.3↓0.3 2.5↓0.2 21.7↓0.6 19.4↓0.2 1.2↓0.2 17.5↓0.5
-w/o LLM 21.3↓0.3 2.6↓0.1 21.8↓0.5 18.6↓1.0 1.2↓0.2 16.7↓1.3
-Only LMLE 20.9↓0.7 1.8↓0.9 18.9↓3.4 18.8↓0.8 0.9↓0.5 16.0↓2.0

Table 3: Ablation study. The base model, MixCL, is
compared with several variants. See Section 7.3.

increases relevance and factuality, demonstrating its
effectiveness in reducing both types of hallucinations. In
particular, we find that KnowledGPT is outperformed by
MixCL in terms of knowledge relevance, probably due to
the presence of retrieval errors. Finally, MixCL’s responses
are considered more human-like by the annotators.

7.3 Ablation Studies
In Table 3, we compare MixCL with several ablative
variants. The variants and our findings are as follows:
No LMCL – We remove the mixed contrast objective. The
performance of the model shows a notable degradation,
especially for the knowledge relevance metric, i.e., KF1.
This suggests that the proposed mixed contrast objective is
effective in increasing the relevance of responses.
No QNeg(∗) – We remove the hard negative sampling
process and use randomly sampled instances as negatives.
The effectiveness of the hard negative sampling is evidenced
by the decrease in the metric on KF1.
No QModel – We remove the negatives generated by the
model. The results suggest that model-generated negatives
provides harder negative examples for the model, i.e., the
knowledge that is more likely to be confounded by the LMs.
No LLM – We remove the LM loss. The effect of the
model is a decline, especially on unseen topics. This results
suggests that LM loss is instrumental in suppressing the
catastrophic knowledge forgetting problem of the LMs in
conversations (Chen et al. 2020a).
Only LMLE – This variant optimizes the model only by MLE
loss. We observe a substantial performance drop, especially
on KF1, which demonstrates the effectiveness of MixCL in
improving the knowledge relevancy and factuality of LMs.

7.4 Efficiency Analysis
In Fig. 4, we compare MixCL against baselines in terms
of efficiency and effectiveness. We adjust the inference
efficiency of the models by evaluating the model with
different numbers of parameters (e.g., 140M and 400M).
Compared with KB-based methods, LM-based methods
generally have an advantage in terms of speed as they
get rid of the extra IR step. However, previous LM-
based methods are outperformed by KB-based methods
regarding response quality. By explicitly eliminating the
hallucinations of LM in conversations, MixCL significantly
improves the response quality of LM-based methods without
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Figure 4: Latency (minutes) versus response quality (F1
score) on WoW test seen and test unseen. Gray, blue, and
orange indicate LM-based, KB-based, and the proposed
methods, respectively. The size of the circle indicates the
number of parameters of these methods.

compromising efficiency. Notably, MixCL is 5× more
efficient than state-of-the-art KB-based methods while
achieving competitive response generation performance.
Moreover, the improvements of MixCL along with the
model size are more noticeable compared to KB-based
methods (see the dashed lines), indicating its superior ability
to utilize the knowledge of pre-trained model.

7.5 Case Study

We conduct several case studies and find that MixCL is more
effective at incorporating knowledge and generating more
engaging and human-like responses than baselines. Details
about our case studies are available in https://github.com/
sunnweiwei/MixCL.

8 Conclusions
In this paper, we have proposed MixCL, a contrastive
learning framework aimed at reducing the hallucination
of language models in conversations. MixCL is enhanced
by negative sampling and mixed contrastive objective.
Experiments on the Wizard-of-Wikipedia dataset have
shown that MixCL outperforms existing LM-based
methods and achieves comparable performance as state-
of-the-art KB-based methods. Human evaluation and
ablative experiments also confirm MixCL’s effectiveness
in eliminating hallucination of LMs. Moreover, MixCL
demonstrates advantages in terms of efficiency and
scalability. Hence, we believe that MixCL provides new
insights on using knowledge inside large language models’
parameters for KGD tasks.

The limitations of this work include the problem of
knowledge forgetting. In future work, we would like
to explore practical approaches to avoiding catastrophic
knowledge forgetting. We also plan to reproduce our
findings for other, less resource-rich languages.
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