
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/334844568

Robust Embedding with Multi-Level Structures for Link Prediction

Conference Paper · August 2019

DOI: 10.24963/ijcai.2019/728

CITATIONS

22
READS

453

5 authors, including:

Zihan Wang

Shandong University

12 PUBLICATIONS   104 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Zihan Wang on 19 February 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/334844568_Robust_Embedding_with_Multi-Level_Structures_for_Link_Prediction?enrichId=rgreq-80aaa4c12995eb2f429a70841a5e6851-XXX&enrichSource=Y292ZXJQYWdlOzMzNDg0NDU2ODtBUzo5OTI3OTkzMDIzNTI4OTdAMTYxMzcxMzIwNzUzNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/334844568_Robust_Embedding_with_Multi-Level_Structures_for_Link_Prediction?enrichId=rgreq-80aaa4c12995eb2f429a70841a5e6851-XXX&enrichSource=Y292ZXJQYWdlOzMzNDg0NDU2ODtBUzo5OTI3OTkzMDIzNTI4OTdAMTYxMzcxMzIwNzUzNA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-80aaa4c12995eb2f429a70841a5e6851-XXX&enrichSource=Y292ZXJQYWdlOzMzNDg0NDU2ODtBUzo5OTI3OTkzMDIzNTI4OTdAMTYxMzcxMzIwNzUzNA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zihan-Wang-40?enrichId=rgreq-80aaa4c12995eb2f429a70841a5e6851-XXX&enrichSource=Y292ZXJQYWdlOzMzNDg0NDU2ODtBUzo5OTI3OTkzMDIzNTI4OTdAMTYxMzcxMzIwNzUzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zihan-Wang-40?enrichId=rgreq-80aaa4c12995eb2f429a70841a5e6851-XXX&enrichSource=Y292ZXJQYWdlOzMzNDg0NDU2ODtBUzo5OTI3OTkzMDIzNTI4OTdAMTYxMzcxMzIwNzUzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Shandong-University?enrichId=rgreq-80aaa4c12995eb2f429a70841a5e6851-XXX&enrichSource=Y292ZXJQYWdlOzMzNDg0NDU2ODtBUzo5OTI3OTkzMDIzNTI4OTdAMTYxMzcxMzIwNzUzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zihan-Wang-40?enrichId=rgreq-80aaa4c12995eb2f429a70841a5e6851-XXX&enrichSource=Y292ZXJQYWdlOzMzNDg0NDU2ODtBUzo5OTI3OTkzMDIzNTI4OTdAMTYxMzcxMzIwNzUzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zihan-Wang-40?enrichId=rgreq-80aaa4c12995eb2f429a70841a5e6851-XXX&enrichSource=Y292ZXJQYWdlOzMzNDg0NDU2ODtBUzo5OTI3OTkzMDIzNTI4OTdAMTYxMzcxMzIwNzUzNA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Robust Embedding with Multi-Level Structures for Link Prediction

Zihan Wang1,2 , Zhaochun Ren3 , Chunyu He1,2 , Peng Zhang1,2∗ and Yue Hu1,2

1Institute of Information Engineering, Chinese Academy of Sciences
2School of Cyber Security, University of Chinese Academy of Sciences

3Shandong University
wangzihan1995@iie.ac.cn, zhaochun.ren@sdu.edu.cn, {hechunyu, pengzhang, huyue}@iie.ac.cn

Abstract
Knowledge Graph (KG) embedding has become
crucial for the task of link prediction. Recent work
applies encoder-decoder models to tackle this prob-
lem, where an encoder is formulated as a graph
neural network (GNN) and a decoder is represented
by an embedding method. These approaches en-
force embedding techniques with structure infor-
mation. Unfortunately, existing GNN-based frame-
works still confront 3 severe problems: low repre-
sentational power, stacking in a flat way, and poor
robustness to noise. In this work, we propose a
novel multi-level graph neural network (M-GNN)
to address the above challenges. We first identify an
injective aggregate scheme and design a powerful
GNN layer using multi-layer perceptrons (MLPs).
Then, we define graph coarsening schemes for var-
ious kinds of relations, and stack GNN layers on
a series of coarsened graphs, so as to model hier-
archical structures. Furthermore, attention mecha-
nisms are adopted so that our approach can make
predictions accurately even on the noisy knowl-
edge graph. Results on WN18 and FB15k datasets
show that our approach is effective in the standard
link prediction task, significantly and consistently
outperforming competitive baselines. Furthermore,
robustness analysis on FB15k-237 dataset demon-
strates that our proposed M-GNN is highly robust
to sparsity and noise.

1 Introduction
Recently, there has been a surge of interest in knowledge
graph construction, with projects such as DBpedia [Auer et
al., 2007] and Google’s Knowledge Vault [Dong et al., 2014].
KGs present data as multi-relational graphs composed of en-
tities as nodes and relations as different types of edges. The
edges (triples) are represented as a triple of the form (s, r, o)
(e.g. s = John, r = IsBornIn, o = Athens). These knowledge
graphs can store rich factual knowledge and have proven use-
ful for many NLP tasks, including question answering [Bor-
des et al., 2015], information retrieval [Xiong and Callan,
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2015]. Meanwhile, the incompleteness of these KGs stim-
ulates more attention to predicting missing triples, which is
the aim of link prediction task.

One of the most crucial techniques for link prediction task
is knowledge graph embedding. Its key idea is to encode en-
tities and relations into continuous low dimensional vector
spaces, i.e., embeddings. And then these embeddings are in-
putted to scoring models for predicting new relations. Finally,
entity and relation embeddings are obtained by maximizing
the total likelihood of observed triples. With the translational
assumption of es+er ≈ eo, early works, such as TransE [Bor-
des et al., 2013], mapped entities and relations into the same
vector space. TransH [Wang et al., 2014], TransR [Lin et al.,
2015] are then proposed by introducing more complicated
relational translation constraints. Besides, DistMult [Chang
et al., 2014], ComplEx [Trouillon et al., 2016] utilize multi-
plicative score functions for calculating probability of triples.

Despite the success of embedding methods, link predic-
tion is, in fact, an inherently graph-formulated task. Embed-
ding methods ignore the neighbor structure of the knowledge
graph, where many missing pieces of information reside. In
contrast, graph neural network (GNN) can effectively learn
node embeddings by recursively aggregating and transform-
ing embeddings of neighbor nodes. To combine the strengths
of both methods into a single model, [Schlichtkrull et al.,
2018] proposed an encoder-decoder framework (R-GCN). R-
GCN contains an encoder of a GNN and a decoder of a ten-
sor factorization embedding method, DistMult. By explicit
modeling neighborhood structures, R-GCN recovers missing
facts and significantly outperforms the direct optimization of
the factorization model.

However, R-GCN model still faces 3 challenges: 1) Low
representational power: R-GCN uses mean aggregator on
the embeddings of the neighbor nodes. This kind of aggrega-
tion scheme is not injective, and easily confused by structures
with repeating features. Consider the central node v1 and v2,
where v1 and v2 have the same set of neighbors with dis-
tinct feature vectors, but v1 contains multiple copies of the
neighbor set of v2. The mean aggregator takes averages over
distinct feature vectors, and maps v1 and v2 to the same em-
beddings. 2) Stacking in a flat way: R-GCN model is inher-
ently flat since it can only propagate information along the
edges. Thus, it is limited to the 1-hop or 2-hop local neigh-
bors, and not able to model the multi-level structure of the
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original graph. 3) Poor robustness to noise: For a given cen-
tral node, R-GCN weighs information from every neighbor
node equally and then performs element-wise mean pooling
on the aggregated information embeddings. However, the im-
portance of different neighbors is not the same, and informa-
tion from unimportant or unreliable neighbors may severely
mislead embedding learning, especially in noisy and sparse
real-world knowledge graphs.

In this paper, we propose a Multi-level Graph Neural Net-
work (M-GNN) framework for link prediction. M-GNN
framework consists of an encoder of a multi-level graph neu-
ral network, and a decoder of an embedding method (e.g.
DisMult, ComplEx). To improve the representational power
of GNN layers, we first identify the structures confusing
R-GCN and then define an injective aggregate scheme us-
ing multi-layer perceptrons (MLPs). On this basis, we de-
velop graph coarsening schemes for relations with different
mapping properties, and then stack multiple GNNs on these
graphs so as to model multi-level structures of the original
graph. Furthermore, to perform predictions on the noisy
knowledge graphs, attention mechanisms are adopted so that
M-GNN can learn the neighbor information adaptively. We
show that M-GNN significantly outperforms the standard
baselines on the WN18 and FB15k datasets. Meanwhile, the
extensive analysis demonstrates that M-GNN maintains ro-
bustness even on noisy and sparse datasets.

Our contributions are summarized as follows:

• We point out the graph structures that cannot be distin-
guished by R-GCN, and define powerful GNN layers
with an injective aggregation scheme.

• We develop a graph coarsening scheme and stack multi-
ple GNN layers on a series of coarsened graphs, which
helps to learn the multi-level structural information of
the original KG.

• We demonstrate the effectiveness of our proposed M-
GNN on the standard WN18 and FB15k datasets. Fur-
thermore, experiments on the noisy knowledge graph
suggest that our approach is highly robust to noise and
sparsity.

2 Related Work
In recent years, knowledge graph embedding has obtained
a surge of attention, and become one of the most crucial
techniques in link prediction task. Its key idea is to em-
bed the entities and relations of a KG into continuous vec-
tor spaces, in order to simplify manipulation while preserv-
ing the inherent structure. With the translational assumption
of es + er ≈ eo, early works, such as TransE [Bordes et
al., 2013], mapped entities and relations into the same vector
space. TransH [Wang et al., 2014], TransR [Lin et al., 2015]
further extended TransE by introducing more complicate re-
lational translation constraints and projecting entities and re-
lations into different continuous spaces. These models based
on translational constraints are also called additive models or
translational distance models. Besides, DistMult [Yang et
al., 2015] and ComplEx [Trouillon et al., 2016] utilize multi-
plicative score functions for calculating plausibility of triples,

which are known as multiplicative models or tensor factoriza-
tion models.

Despite the huge success in embedding methods for mak-
ing predictions of new facts, link prediction is an inherently
graph-formulated task, where connectivity structures are also
important. Our proposed model (M-GNN) incorporate pre-
vious embedding methods with those neighbor structures by
assigning an extension of graph neural network (GNN) as the
encoder and an embedding method as the decoder.

GNNs were proposed to efficiently ingest graph structure
and perform predictions. Recent attempts to extend GNN can
be divided into two classes of approaches. The spectral ap-
proaches [Henaff et al., 2015; Defferrard et al., 2016] learn
convolution filter using the eigendecomposition of the graph
Laplacian. The second class of methods, known as spatial
approaches, define convolutions directly on the graph. These
approaches maintain the effective parameter-sharing, while
are invariant to edge order and node degree, such as learn-
ing adaptive weights for different node degrees [Duvenaud
et al., 2015], or formulating the problem as message pass-
ing [Gilmer et al., 2017].

The most relevant work to ours is R-GCN [Schlichtkrull et
al., 2018], which enforces connectivity structures in embed-
ding methods with an encoder of GNN module. However, R-
GCN is easily affected by noise since it aggregates all kinds
of information from neighbors, cannot distinguish some sim-
ple structures due to non-injective aggregation scheme, and
ignore the hierarchical structural information in the graph.
GCNN [Neil et al., 2018] is a simple extension of R-GCN
with a regularized attention mechanism that slightly improves
the performances, but still suffers from low representational
power, flat network structure and poor robustness problems.
In contrast, our proposed approach weighs neighbor struc-
tural information adaptively, identifies an injective aggregator
using MLPs and stacks multiple GNN layers in a multi-level
way to obtain further improvements.

3 Method
We first introduce the following definitions of the knowledge
graph (KG): we denote the knowledge graph as a directed and
multi-labeled graph G = (V, E ,R), where vi ∈ V is a node,
ri ∈ R is a relation type and (vi, rj , vk) ∈ E is a labeled edge
(or a triple).

In this section, we present our approach in detail. We first
introduce a basic graph neural network for link prediction
(§ 3.1). Then we detail the GNN layers (§ 3.2) with high rep-
resentational power and multi-level GNN (§ 3.3) with Graph
Coarsening.

3.1 A Basic GNN Model
We first begin with a basic GNN framework for link pre-
diction. Following [Xu et al., 2018; Schlichtkrull et al.,
2018], an end-to-end GNN link prediction model comprises
two components: a GNN-based encoder for embedding enti-
ties, and a decoder for calculating the probability of edges.

Encoder
A GNN-based encoder collects information from the neigh-
borhood structure and then map entities (nodes) to embed-
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dings. Modern GNNs follow the neighbor aggregation strat-
egy [Xu et al., 2018], updating the representation of a node
by aggregating representations of its neighbors repeatedly.
The k − th layer of a GNN can be formulated as follow:

a(k)v = AGGREGATEk(h(k−1)u : u ∈ N (v)),

h(k)v = COMBINEk(h(k−1)v , a(k)v ),
(1)

where hkv is the feature vector of node v at the k-th layer and
N (v) is the set of nodes adjacent to node v.

In a relational multi-graph (such as KG), we can naturally
extend the above framework as follow:

a(k)v = AGGREGATEk(h(k−1)r,u : u ∈ N r
v ),

h(k)v = COMBINEk(h(k−1)r0,v , a(k)v ),
(2)

where h(k)r,u : u ∈ N r
v denotes the message passing from the

neighbor node u under relation r at the k−th layer, and h(k)r0,v

denotes the self-connection message.
R-GCN and R-GCN+ [Schlichtkrull et al., 2018] set

hr,u = Wrhu, AGGREGATE(·) = MEAN(·), and de-
fine the following propagation model for the forward-pass up-
date of the entity embeddings:

h
(k)
i = σ(

∑
r∈R

∑
j∈N r

i

1
ci,r

W
(k−1)
r h

(k−1)
j +W

(k−1)
0 h

(k−1)
i ), (3)

whereN r
i denotes the set of neighbor indices of node i under

relation r ∈ R. ci,r is a normalization constant (ci,r = |N r
i |).

In [Neil et al., 2018], attention mechanisms are adopted and
ci,r is trainable.

Decoder
Link prediction deals with the prediction of new facts
(triples), given an incomplete subset of the knowledge graph.
The task is to assign scores in order to determine how likely
those unseen edges belong to E .

To address the problem, the decoder needs to reconstruct
edges of the knowledge graph using the entity embeddings
from the encoder, i.e., ev = h

(K)
v , for v ∈ V . A variety of

algorithms can be adopted, since the choice of decoder is in-
dependent of the encoder. R-GCN [Schlichtkrull et al., 2018]
mainly focuses on the DisMult decoder:

f(es, Rr, eo) = eTs Rreo, (4)

where es, eo are the subject and object embeddings and Rr

is a diagonal relaton matrix. In our work, we also consider
ComplEX decoder [Trouillon et al., 2016].

In the following sections, we mainly focus on the GNN
based encoder, designing GNN layers with high representa-
tional power, and extending flat GNN layers to the multi-level
form.

3.2 A GNN Layer with High Representational
Power

The choice of AGGREGATE(·) and COMBINE(·) in
Eq. 2 is crucial to the representation power of the GNN layer.
In the previous studies, R-GCN and R-GCN+ [Schlichtkrull
et al., 2018] utilize mean pooling as their aggregator. How-
ever, as Figure 1 shows, such kind GNN can be even con-
fused by some simple graphs. In Figure 1, nodes with dif-
ferent colors have different embeddings. In Figure 1(a),

𝑟"

𝑟"

𝑟" 𝑟"

𝑟"
V.S.

(a)

𝑟"

𝑟"

𝑟" 𝑟"
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𝑟"𝑟"

(b)

Figure 1: Examples of some simple structures that confuse the mean
aggregator.
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Figure 2: Overview of the M-GNN. M-GNN consists of an encoder
of a multi-level GNN and a decoder of an embedding method. The
outputs of the encoder, entity embedding matrices, are then inputted
to the decoder with relation embeddings for predicting new facts.

when conducting neighborhood aggregation, the mean ag-
gregator fails to distinguish the structures and obtains the
same information, since 1

2 (2 · hr1blue) = 1
3 (3 · hr1blue).

Similarlly, the mean aggregator fails in Figure 1(b) since
1
2 (hr1blue + hr1yellow) =

1
4 (2 · hr1blue +2 · hr1yellow). Intu-

itively, a powerful GNN layer maps two entities to the same
location only if they have identical neighborhood structures
with identical embeddings on the corresponding entities. This
means its aggregation scheme is injective, i.e., for each pair
((r0, v), {(r, u) : u ∈ N r

v }), hv = GNN((r0, v), {(r, u) :
u ∈ N r

v }) is unique. According to Corollary 6 in [Xu
et al., 2018], we can decomposed any injective GNN(·) as
GNN(·) = φ((1 + ε) · f(r0, v) +

∑
u∈Nr

v
f(r, u)) for some

function f , φ, and constant ε. In practice, we can use multi-
layer perceptrons (MLPs) to model f and φ, according to the
universal approximation theorem [Hornik et al., 1989]:

h(k)v =MLP (k)((1 + ε(k)) · h(k−1)r0,v +
∑

u∈N r
v

h(k−1)r,u ), (5)

where ε(k) can be a learnable parameter or a fixed scalar.
Strictly, we should set hr,v = MLPr(hv) for every r ∈
R ∪ {r0} to make aggregation scheme injective. To reduce
complexity, we simply employ the linear transformation here:
hr,v =Wrhv .

3.3 Multi-Level GNN Layers with Graph
Coarsening

In the previous studies [Schlichtkrull et al., 2018; Neil et al.,
2018], the GNN method is inherently flat, i.e., they can only
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Algorithm 1 Graph Coarsening.
Require:

Knowledge graph KG = (V, E ,R);
Ensure:

Coarsened graph G0, G1, ..., Gk;
1: m← 0
2: G0 ← KG
3: while |Em| ≥ threshold do
4: m← m+ 1;
5: Gm ← EdgeCoarsen(NeighborCoarsen(Gm−1))
6: end while
7: return G0, G1, ..., Gk;

propagate information across edges. These methods are un-
able to aggregate information of different granularities. As
Figure 2 shows, our goal is to stack multiple GNN layer in a
multi-level way: we first define a strategy to output a series of
coarsened graphs, and then we can build a multi-level GNN
operating on these graphs with different scales.

Graph Coarsening
To develop a graph coarsening scheme that preserves struc-
tural information at different scales, we consider four types
of relations in KGs [Lin et al., 2015]: 1-to-1, 1-to-N, N-to-1
and N-to-N. And each type of relation may contain different
structures:
• 1-to-1 relations: only contain the 1-to-1 structure.
• 1-to-n/n-to-1 relations: may contain 1-to-1 and 1-to-n/n-

to-1 structures.
• n-to-n relations: may contain 1-to-1, 1-to-n and n-to-1

structures.
Here, n-to-n structure is not taken into consideration since

it can be divided into multiple 1-to-n and n-to-1 structures.
For 1-to-1 structure, we propose a simple coarsening scheme,
namely edge coarsening. It first selects a subset E ′ ⊂ E ,
in which no two edges are incident to the same node. And
then, as Figure 3(a) shows, for each (vi, r, ui) ∈ E ′, it merges
(vi, r, ui) into a supernode. For 1-to-n/n-to-1 structure, con-
sidering the similarity of nodes that share the same neighbor-
hood, we develop the neighbor coarsening scheme. As Fig-
ure 3(b) and Figure 3(c) shows, (e1, e6), (e2, e3), (e4, e5) are
merged into supernodes since they share same neighbor e7.
The orders for both coarsening schemes are arbitrary since
we obtain similar node embeddings with different coarsening
orders.

To combine edge and neighbor coarsening scheme, as algo-
rithm 1 shows, in each coarsening step, we first compress the
input graph with neighbor coarsening, and then adopt edge
coarsening to output a new coarser graph.

Multi-Level GNN
The outputs of the graph coarsening scheme are a series of
coarsened graphs,G1, ..., GK , whereG1 is the coarsest graph
and GK is the original graph. As Figure 2 shows, our goal
here is to stack K GNN layers aggregating structural infor-
mation from the coarsest graph to the original graph. We de-
note S(k) ∈ Rnk×nk+1 as the cluster assignment matrix at
layer k. Each column of S(k) refers to one of the nk+1 nodes

Dataset # Ent # Rel # Train /Valid/Test
WN18 40943 18 141442/5000/5000
FB15k 14951 1345 483142/50000/59071

FB15k-237 14541 237 272115/17535/20466

Table 1: Datasets Statistics.

at layer k + 1, and each row refers to one of the nk supern-
odes (clusters) at layer k. S(k) provides the assignment of
each node in graph Gk+1 to the supernode in the coarsened
graph Gk. After the embedding matrix H(k−1) for the graph
Gk−1 is learned, we extend it as the initial representations for
the graph Gk by S(k−1)TH(k−1). Now we can define k − th
layer of our proposed multi-level GNN by extending Eq. 5 as
follow (on the graph Gk):

H ′(k−1) = S(k−1)TH(k−1),

h(k−1)r,v =W (k−1)
r h′(k−1)v ,

h(k)v =MLP (k)((1 + ε(k)) · h(k−1)r0,v +
∑

u∈N r,(k)
v

h(k−1)r,u ),

(6)

where H ′(k) is a embedding matrix mapped from the embed-
ding matrixH(k) through assignment matrix S(k) and we ran-
domly initialize the embedding matrix H(0). Following the
previous work [Schlichtkrull et al., 2018; Neil et al., 2018],
we optimize our model with cross-entropy loss and negative
sampling.

4 Experiments
In this section, we present our experimental settings and re-
sults. We first introdue the datasets and baselines in our ex-
periment (§ 4.1 and § 4.2). Then, we first evaluate our ap-
proach in the standard link prediction task (§ 4.3). After that,
by constructing noisy knowledge graphs, we conduct exten-
sive analysis on the robustness of our approach (§ 4.4).

4.1 Datasets
We evaluate our link prediction algorithm on two commonly
used datasets: FB15k, a subset of the multi-label knowledge
base Freebase and WN18, a subset of WordNet featuring lex-
ical relations between words. Both datasets are released by
[Bordes et al., 2013].

As [Toutanova and Chen, 2015] shows, inverse triplet pairs
t = (e1, r, e2) and t′ = (e2, r

−1, e1) appears in both datasets
with t in the training set and t′ in the test set. This inverse
triplet pair flaw simplifies a large part of link prediction task
for the memorization of inverse triplet pairs. To address this
problem, [Toutanova and Chen, 2015] release the dataset
FB15k-237 removing all inverse triplet pairs. Thus, We use
FB15k-237 dataset for our extensive experiments. Table 1
further summarizes the statistics of the datasets.

All the datasets only provide positive triples. Follow-
ing [Bordes et al., 2013], we adopt the local closed world
assumption to generate negatives. Specifically, given a triple,
we randomly corrupt the subject or the object to generate a
negative example.
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Figure 3: Examples of graph coarsening scheme. 3(a): edge coarsening scheme. 3(b) and 3(c): common neighbor coarsening scheme.
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Figure 4: Cross-entropy loss on training sets.

4.2 Baselines
DistMult [Yang et al., 2015] and ComplEx [Trouillon et al.,
2016] are the common baselines. These factorization meth-
ods not only perform well on standard datasets, but are the
decoders of our proposed model. Besides, we also consider
R-GCN and R-GCN+ [Schlichtkrull et al., 2018], the current
GNN-based methods for link prediction, and GCNN [Neil et
al., 2018], which is an extension of R-GCN in a way that
weighs the different connections of a central node adaptively.
We further compare with the classic algorithm TransE [Bor-
des et al., 2013].

4.3 Link Prediction Task
In this section, we combine our multi-level GNN model with
decoders to predict new facts in knowledge graphs. Multiple
decoders are adopted including DistMult [Yang et al., 2015]
and ComplEx [Trouillon et al., 2016]. We select commonly
used WN18 and FB15k for evaluating our link prediction al-
gorithms.

Results
For the evaluation of link prediction results, we measure the
quality of every test triple among all possible subjects and
objects substitution. In our experiment, we use two widely
used evaluation metrics for link prediction: mean reciprocal
rank (MRR) and Hits at n (Hits@n). We report both filtered
and raw MRR (following [Bordes et al., 2013]), and filtered
Hits at 1, 3 and 10.

In addition to baselines, we evaluate several variants of our
model: M-GNN(MLP) employs Eq.5 without graph coars-
ening scheme; M-GNN(MLP, Multi) uses both MLPs and

graph coarsening scheme, i.e., Eq.6. Considering comple-
mentarity between models, we also employ ensemble scheme
as [Schlichtkrull et al., 2018], which we refer to as M-
GNN+(MLP, Multi). To avoid the influence of the choices
of decoders, we consider both DistMult (with ”*”) and Com-
plEx (with ”**”) decoders for both M-GNN and R-GCN.

The hyperparameters in M-GNN are determined by the
grid search on the validation set. The ranges of the hyper-
parameters are manually set as follow: learning rate {0.01,
0.005, 0.003, 0.001}, dropout rate {0, 0.1, 0.2, 0.3,...,0.9},
embeddings size {100, 150, 200, 300}, regularization coeffi-
cient {0.01,0.05,0.1,0.5,1.0}, the number of negative samples
{1,3,5,10} and ε = 0. For both FB15k and WN18 datasets,
we use M-GNN with three GNN layers and all MLPs have
two layers with the hidden unit number ∈ {10,50,100,200}.
For the ComplEx encoder, we treat complex vectorCd as real
vector Rd×2 in the encoder. We train the models with Adam
optimizer [Kingma and Ba, 2015].

Results are shown in Table 2. We first compare our model
M-GNN with the first five baselines. M-GNN consistently
outperforms those methods without graph neural network.
Thus, we can conclude that GNN takes the neighborhood
structures into consideration, which significantly facilitates
the learning process of entity and relation embeddings.

Then, we compare M-GNN to R-GCN with the same
decoder DistMult or ComplEx. M-GNN(MLP) consis-
tently outperforms R-GCN, while M-GNN(MLP, Multi) con-
sistently outperforms both M-GNN(MLP) and R-GCN. It
demonstrates that MLP layers and multi-level structural infor-
mation are both beneficial for link prediction. Additionally,
we show the cross-entropy loss on training sets in Figure 4.
We observe that our approach can fit the training sets better
and its convergence process is significantly faster, which con-
tributes to high representational power and multi-level struc-
tural information.

Finally, we compare M-GNN** with M-GNN* and R-
GCN. M-GNN** significantly outperforms M-GNN* and R-
GCN for the most of situations. This suggests that combined
with the decoder that achieves higher results, M-GNN can
predict new facts more accurately.

In summary, our proposed model M-GNN can accurately
predict new facts, and each component of our model is helpful
for entity and relation representation learning.

4.4 Extensive Analysis on the Robustness
In the previous sections, we can conclude that our proposed
method is effective for the standard link prediction task. To
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FB15k WN18
MRR Hits@ MRR Hits@

Method Raw Filter 1 3 10 Raw Filter 1 3 10

TransE 0.221 0.380 0.231 0.472 0.641 0.335 0.454 0.089 0.823 0.934
DistMult 0.248 0.634 0.522 0.718 0.814 0.526 0.813 0.701 0.921 0.943
ComplEx 0.242 0.692 0.599 0.759 0.840 0.587 0.941 0.936 0.945 0.947
R-GCN 0.251 0.651 0.541 0.736 0.825 0.553 0.814 0.686 0.928 0.955

R-GCN+ 0.262 0.696 0.601 0.760 0.842 0.561 0.819 0.697 0.929 0.964
R-GCN** 0.247 0.700 0.603 0.763 0.844 0.588 0.942 0.933 0.945 0.953

R-GCN+** 0.250 0.706 0.615 0.769 0.849 0.589 0.944 0.936 0.947 0.956
M-GNN(MLP)* 0.257 0.658 0.550 0.742 0.833 0.560 0.824 0.702 0.934 0.966

M-GNN(MLP, Multi)* 0.271 0.667 0.563 0.756 0.841 0.568 0.830 0.705 0.946 0.965
M-GNN+(MLP, Multi)* 0.279 0.696 0.618 0.772 0.853 0.572 0.835 0.710 0.947 0.966

M-GNN(MLP)** 0.263 0.708 0.611 0.765 0.845 0.590 0.941 0.936 0.945 0.967
M-GNN(MLP, Multi)** 0.269 0.717 0.636 0.774 0.857 0.595 0.943 0.939 0.947 0.967

M-GNN+(MLP, Multi)** 0.276 0.747 0.671 0.795 0.876 0.597 0.948 0.940 0.950 0.967

Table 2: Performances on FB15k and WN18 Datasets.

Hits@10 MRR
Method 100% 50% Skip Noised 100% 50% Skip Noised

DistMult 0.432 0.202 - 0.206 0.239 0.087 - 0.089
ComplEx 0.441 0.241 - 0.243 0.259 0.109 - 0.110

GCNN 0.475 0.332 0.258 0.214 0.272 0.168 0.133 0.111
GCNN w/att 0.482 0.347 0.340 0.356 0.283 0.185 0.188 0.191

M-GNN(MLP)* 0.456 0.268 0.234 0.210 0.255 0.108 0.115 0.103
M-GNN(MLP, Multi)* 0.465 0.286 0.271 0.266 0.273 0.146 0.167 0.185

M-GNN(MLP)** 0.483 0.341 0.263 0.244 0.278 0.173 0.144 0.121
M-GNN(MLP, Multi)** 0.506 0.358 0.356 0.367 0.327 0.198 0.205 0.209

Table 3: Performances on FB15k-237 Dataset.

further analyze the robustness to noise and sparsity, we adopt
experimental settings in [Neil et al., 2018] on the FB15k-237
dataset, and four different training conditions are taken into
consideration.

Results
Following [Neil et al., 2018], the training set is split evenly
so that half of the triples are in gtrue and half in gadd. First,
to establish a baseline, methods are trained normally on the
full datasets (gtrue ∪ gadd), which refers to ”100%” condi-
tion. To explore the impact of sparsity, we establish ”50%”
condition, which refers to training only on gtrue. To gener-
ate noisy triples, we follow [Pujara et al., 2017] and corrupt
one of a subject, relation, or object entry for the triples in gadd
with equal probability, such that |gnoise| = |gadd|. For ”Skip”
condition, the adjacency matrix of the GNN model contains
all the edges from gall = gtrue ∪ gadd ∪ gnoise, while only
edges in ggold are used for training. For ”Noised” condition,
methods are trained upon gall.

For predicting new facts on the noisy graphs, we fol-
low [Neil et al., 2018] and adopt the attention mechanism
on our proposed GNN layer: h(k)v = MLP (k)((1 + ε(k)) ·
h
(k−1)
r0,v +

∑
u∈N r,(k)

v
αv,r,uh

(k−1)
r,u ), where αv,r,u ∈ [0, 1] is

trainable. For the FB15k-237 datasets of the four training set-
tings, we use M-GNN with two GNN layers and all MLPs
have two layers. Other ranges of hyperparameters are the
same in the link prediction task. Note that since M-GNN+
and M-GNN show very similar results, we only report the
results of the M-GNN model here.

In the experiment, we evaluate link prediction results and
report filtered MRR and Hits@10. The results are shown
in Table 3. The results of baselines are taken from [Neil

et al., 2018], which compare favorably with those reported
in [Schlichtkrull et al., 2018]. For the ”100%” training con-
dition, our model consistently outperforms other baselines in-
cluding R-GCN (MRR:0.158, Hits@10:0.414) and R-GCN+
(MRR:0.156,Hits@10:0.417). For the noisy or sparse knowl-
edge graph, all the performances are dramatically reduced,
while M-GNN can still achieve the best results. Thus, GNN
layers with higher representational power and multi-level
structural information are more robust to sparsity and noise.

5 Conclusions
In this paper, we proposed a novel multi-level GNN-based
framework (M-GNN) with high representational power and
demonstrated its effectiveness and robustness on multiple
datasets under various training conditions. We first pointed
out the examples that confused mean aggregator, which was
widely used by the previous GNN-based models. Then, we
identified an injective aggregation scheme, and further de-
signed a powerful GNN layer using MLPs. On the basis
of that, we coarsened the knowledge graph into a series of
graphs and stacked GNN layers in a multi-level way, to un-
cover hierarchical structure information. Experimental re-
sults show that our approach is both effective for identifying
new facts and robust to noise and sparsity.
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